当前位置: 首页 > news >正文

Python电能质量扰动信号分类(五)基于CNN-Transformer的一维信号分类模型

目录

往期精彩内容:

引言

1 数据集制作与加载

1.1 导入数据

1.2 制作数据集

2 CNN-Transformer分类模型和超参数选取

2.1定义CNN-Transformer分类模型

2.2 设置参数,训练模型

3 模型评估

3.1 准确率、精确率、召回率、F1 Score

3.2 十分类混淆矩阵:

代码、数据如下:


往期精彩内容:

电能质量扰动信号数据介绍与分类-Python实现-CSDN博客

Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客

Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型-CSDN博客

Python电能质量扰动信号分类(四)基于CNN-BiLSTM的一维信号分类模型-CSDN博客

引言

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现CNN-Transformer模型对扰动信号的分类。

Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):

电能质量扰动信号数据介绍与分类-Python实现_pypower计算电网频率质量-CSDN博客

部分扰动信号类型波形图如下所示:

1 数据集制作与加载

1.1 导入数据

在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:

第一步,按照公式模型生成单一信号

单一扰动信号可视化:

第二步,导入十分类数据

import pandas as pd
import numpy as np# 样本时长0.2s  样本步长1024  每个信号生成500个样本  噪声0DB  
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1]  # 训练集、验证集、测试集划分比例# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape

1.2 制作数据集

第一步,定义制作数据集函数

第二步,制作数据集与分类标签

2 CNN-Transformer分类模型和超参数选取

2.1定义CNN-Transformer分类模型

注意:输入数据维度为[64, 1, 1024], 先送入CNN网络进行1d的卷积池化,然后再把卷积池化的空间特征送入Transformer进行信号特征增强,最终送入全连接层和softmax进行分类。

2.2 设置参数,训练模型

100个epoch,准确率将近100%,CNN-Transformer模型分类效果良好,分类准确率高,性能优越,适当调整模型参数,可以进一步提高分类准确率。

注意调整参数:

  • 可以适当增加 CNN层数和隐藏层维度数,微调学习率;

  • 增加Transformer编码器层数和维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变一维信号堆叠的形状(设置合适的长度和维度)

3 模型评估

3.1 准确率、精确率、召回率、F1 Score

3.2 十分类混淆矩阵:

代码、数据如下:

相关文章:

Python电能质量扰动信号分类(五)基于CNN-Transformer的一维信号分类模型

目录 往期精彩内容: 引言 1 数据集制作与加载 1.1 导入数据 1.2 制作数据集 2 CNN-Transformer分类模型和超参数选取 2.1定义CNN-Transformer分类模型 2.2 设置参数,训练模型 3 模型评估 3.1 准确率、精确率、召回率、F1 Score 3.2 十分类混淆…...

基于Vue组合式API的实用工具集

简介 今天,给大家分享一个很实用的工具库 VueUse,它是基于 Vue Composition Api,也就是组合式API。支持在Vue2和Vue3项目中进行使用,据说是目前世界上Star最高的同类型库之一。 图片 官方地址:https://vueuse.org/ 中文地址:https://www.vueusejs.com/ github:https…...

065:vue中将一维对象数组转换为二维对象数组

第065个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…...

mysql 字符串分割

目录 前言substring_indexsubstring_index 特性字符串分割 前言 略 substring_index 正向截取字符串 mysql> select substring_index(www.baidu.com,.,1); ---------------------------------------- | substring_index(www.baidu.com,.,1) | -------------------------…...

解决Windows11 “我们无法设置移动热点”

目录 问题复现解决办法①启动网络适配器②打开移动热点③共享网络连接④连接移动热点总结 问题复现 因为交换机上网口限制,开发环境暂时没有WIFI设备,只有一根网线和一台笔记本电脑。于是开启笔记本电脑的WiFi共享服务。结果提示 “我们无法设置移动热点…...

python tcp socket中实现SSL/TLS认证

SSL/TLS介绍 官话说SSL是安全套接层(secure sockets layer),TLS是SSL的继任者,叫传输层安全(transport layer security)。 说白点,就是在明文的上层和TCP层之间加上一层加密,这样就保证上层信息传输的安全。如HTTP协议是明文传输…...

SQL-修改表操作

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL 🍹文章作者技术和水平很有限,如果文中出现错误&am…...

【Node.js学习 day3——http模块】

创建HTTP服务端 //1.导入http模块 const http require(http);//2.创建服务对象 const server http.createServer((request, response) > {response.end(Hello HTTP Server);//设置响应体 });//3.监听端口,启动服务 server.listen(9000,()>{console.log(服务…...

初探UAF漏洞(3)

构造exp #include <iostream> #include <Windows.h>typedef void(*FunctionPointer) ();typedef struct _FAKE_USE_AFTER_FREE {FunctionPointer countinter;char bufffer[0x54]; }FAKE_USE_AFTER_FREE, * PUSE_AFTER_FREE;void ShellCode() {_asm{noppushadmov e…...

C++学习笔记(二十一)

一、set/multiset容器 1. set基本概念 简介&#xff1a;所有元素都会在插入时自动被排序 本质&#xff1a;set/multiset属于关联式容器&#xff0c;底层结构是用二叉树实现的 set和multiset的区别&#xff1a;set不允许容器中有重复的元素&#xff0c;multiset允许容器中有…...

Java版企业电子招投标系统源代码,支持二次开发,采用Spring cloud技术

在数字化时代&#xff0c;采购管理也正经历着前所未有的变革。全过程数字化采购管理成为了企业追求高效、透明和规范的关键。该系统通过Spring Cloud、Spring Boot2、Mybatis等先进技术&#xff0c;打造了从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通过…...

01、Kafka ------ 下载、安装 ZooKeeper 和 Kafka

目录 Kafka是什么&#xff1f;安装 ZooKeeper下载安装启动 zookeeper 服务器端启动 zookeeper 的命令行客户端工具 安装 Kafka下载安装启动 Kafka 服务器 Kafka是什么&#xff1f; RabbitMQ的性能比ActiveMQ的性能有显著提升。 Kafka的性能比RabbitMQ的性能又有显著提升。 K…...

Spark: 检查数据倾斜的方法以及解决方法总结

1. 使用Spark UI Spark UI提供了一个可视化的方式来监控和调试Spark作业。你可以通过检查各个Stage的任务执行时间和数据大小来判断是否存在数据倾斜。 任务执行时间: 如果某个Stage中的大部分任务很快完成&#xff0c;但有少数任务执行时间非常长&#xff0c;这可能是数据倾…...

基于JavaWeb+BS架构+SpringBoot+Vue“共享书角”图书借还管理系统系统的设计和实现

基于JavaWebBS架构SpringBootVue“共享书角”图书借还管理系统系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 第1章 概 述 5 1.1 开发背景及研究意义 5 1.2 国内外研究…...

论文阅读:TinyGPT-V 论文阅读及源码梳理对应

&#xff01;&#xff01;&#xff01;目前只是初稿&#xff0c;静待周末更新 引言 TinyGPT-V来自论文&#xff1a;TinyGPT-V: Efficient Multimodal Large Language Model via Small Backbones&#xff0c;是一篇基于较小LLM作为backbone的多模态工作。相关工作已经开源&…...

XCTF:MISCall[WriteUP]

使用file命令&#xff0c;查看该文件类型 file d02f31b893164d56b7a8e5edb47d9be5 文件类型&#xff1a;bzip2 使用bzip2命令可对该文件进行解压 bzip2 -d d02f31b893164d56b7a8e5edb47d9be5 生成了一个后缀为.out的文件 再次使用file命令&#xff0c;查看该文件类型 file…...

【MIdjourney】图像角度关键词

本篇仅是我个人在使用过程中的一些经验之谈&#xff0c;不代表一定是对的&#xff0c;如有任何问题欢迎在评论区指正&#xff0c;如有补充也欢迎在评论区留言。 1.侧面视角(from side) 侧面视角观察或拍摄的主体通常以其侧面的特征为主要焦点&#xff0c;以便更好地展示其轮廓…...

使用 Jamf Pro 和 Okta 工作流程实现自动化苹果设备管理

Jamf的销售工程师Vincent Bonnin与Okta的产品经理Emily Wendell一起介绍了JNUC 2021的操作方法会议。它们涵盖了Okta工作流程&#xff08;Okta Workflow&#xff09;&#xff0c;并在其中集成了Jamf Pro&#xff0c;构建了一些工作流程&#xff0c;并提供了几个用例。 Okta 工作…...

根能抵达的节点(二分法、DFS)C++

给定一棵由 N个节点构成的带边权树。节点编号从 0到 N−1&#xff0c;其中 0 号点为根节点。最初&#xff0c;从根节点可以抵达所有节点&#xff08;包括自己&#xff09;。如果我们将所有边权小于 X 的边全部删掉&#xff0c;那么从根节点可以抵达的节点数目就可能发生改变。 …...

一天一个设计模式---桥接模式

概念 桥接器模式是一种结构型设计模式&#xff0c;旨在将抽象部分与实现部分分离&#xff0c;使它们可以独立变化而不相互影响。桥接器模式通过创建一个桥接接口&#xff0c;连接抽象和实现&#xff0c;从而使两者可以独立演化。 具体内容 桥接器模式通常包括以下几个要素&a…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...