Mysql 嵌套子查询
文章目录
- 子查询
大家好!我是夏小花,今天是
2024年1月13日|腊月初三
子查询
需求是:最外层的查询语句里面包含四个不相同表的查询,根据月份进行关联查询,每个查询语句中的where条件可以自行去定义,最后返回数量和月份
语法:
select a.月份,a.总数一,b.总数二,c.总数三,d.总数四
from (SELECTCONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0')) AS Month,COUNT(DISTINCT m.id) AS 总数一FROM persion mJOIN zs_yi br ON m.id = br.p.idWHEREYEAR(br.measuring_time) = 2023 AND ((br.dbpval > m.dbpval_max OR br.dbpval < m.dbpval_min) OR(br.sbpval > m.sbpval_max OR br.sbpval < m.sbpval_min))GROUP BY CONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0'))) a left join(SELECTCONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0')) AS Month,COUNT(DISTINCT m.id) AS xtCountFROM pserion mJOIN zs_er br ON m.id = br.p_idWHEREYEAR(br.measuring_time) = 2023 AND ((br.gluval > m.sugar_max OR br.gluval < m.sugar_min))GROUP BY CONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0'))) b on a.月份 = b.月份 left join(SELECTCONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0')) AS Month,COUNT(DISTINCT m.id) AS xzCountFROM pserion mJOIN zs_san br ON m.id = br.p_idWHEREYEAR(br.measuring_time) = 2023 AND ((br.total_cholesterol > m.blood_max OR br.total_cholesterol < m.blood_min))GROUP BY CONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0'))) c on a.月份 = c.月份 left join(SELECTCONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0')) AS Month,COUNT(DISTINCT m.id) AS tzCountFROM persion mJOIN zs_si br ON m.id = br.p_idWHEREYEAR(br.measuring_time) = 2023 AND ((br.bmi > m.bodyfat_max OR br.bmi < m.bodyfat_min))GROUP BY CONCAT(YEAR(br.measuring_time), '-', LPAD(MONTH(br.measuring_time), 2, '0'))) d on a.月份 = d.月份order by a.月份 asc
相关文章:
Mysql 嵌套子查询
文章目录 子查询 大家好!我是夏小花,今天是2024年1月13日|腊月初三 子查询 需求是:最外层的查询语句里面包含四个不相同表的查询,根据月份进行关联查询,每个查询语句中的where条件可以自行去定义,最后返回数量和月份 …...
Qt QLabel标签控件
文章目录 1 属性和方法1.1 文本1.2 对齐方式1.3 换行1.4 图像 2. 实例2.1 布局2.2 为标签添加背景色2.3 为标签添加图片2.4 代码实现 QLabeI是Qt中的标签类,通常用于显示提示性的文本,也可以显示图像 1 属性和方法 QLabel有很多属性,完整的可…...
iOS14 Widget 小组件调研
桌面小组件是iOS14推出的一种新的桌面内容展现形式。 根据苹果的统计数据,“一般用户每天进入主屏幕的次数超过90次”,如果有一个我们应用的小组件在桌面,每天都有超过90次曝光在用户眼前的机会,这绝对是一个顶级的流量入口。 “…...
HarmonyOS的应用类型(FA vs Stage)
HarmonyOS目前提供两种应用模型 FA(Feature Ability)模型: HarmonyOS API 7开始支持的模型,已经不再主推。 Stage模型: HarmonyOS API 9开始新增的模型,是目前主推且会长期演进的模型。在该模型中,由于提供了AbilityStage、WindowStage等类作为应用组件和Window窗口的…...
Jeecg创建表单页面步骤
1.在Online表单开发里面新建一个表单页面,可以修改数据库属性、页面属性、校验字段、外键、索引,新建完成之后然后同步数据库 2.选中该表,然后生成代码,可以先把代码放在桌面,然后将文件夹是包名称的文件复制到后端代…...
leetcode17 电话号码的字母组合
方法1 if-else方法 if-else方法的思路及其简单粗暴,如下图所示,以数字234为例,数字2所对应的字母是abc,数字3所对应的是def,数字4所对应的是ghi,最后所产生的结果就类似于我们中学所学过的树状图一样&…...
用html和css实现一个加载页面【究极简单】
要创建一个简单的加载页面,你可以使用 HTML 和 CSS 来设计。以下是一个基本的加载页面示例: HTML 文件 (index.html): <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"…...
Android-消息机制Handler
Handler的机制:Android 消息传递机制就是handler。在多线程的应用场景中,将工作线程中需更新UI的操作信息 传递到 UI主线程,从而实现对UI的更新处理,最终实现异步消息的处理。多个线程并发更新UI的同时 保证线程安全。Handler只是一个入口&am…...
MySQL夯实之路-事务详解
事务四大特性 事务需要通过严格的acid测试。Acid表示原子性,一致性,隔离性,持久性。 原子性(atomicity) 事务是不可分割的最小单元,对于整个事务的操作,要么全部提交成功,要么全部…...
安泰电子前置微小信号放大器怎么用的
前置微小信号放大器是一种重要的电子设备,用于放大微弱的输入信号,提高系统的灵敏度。它在各种领域中都有广泛的应用,包括音频、通信、测量等。在这篇文章中,我们将详细介绍前置微小信号放大器的使用方法,以便更好地理…...
【深度学习每日小知识】Overfitting 过拟合
过拟合是机器学习(ML)中的常见问题,是指模型过于复杂,泛化能力较差的场景。当模型在有限数量的数据上进行训练,并且学习了特定于该特定数据集的模式,而不是适用于新的、看不见的数据的一般模式时࿰…...
嵌入式必备的WEB知识
写在前面 嵌入式要学习Wed前端吗?答案是要的,不需要深入学习,只需要简单了解即可。为什么要学习? 原因如下: 可以远程控制和管理设备:通过简单的Web知识,嵌入式系统可以建立Web界面,…...
Scipy 中级教程——信号处理
Python Scipy 中级教程:信号处理 Scipy 的信号处理模块提供了丰富的工具,用于处理和分析信号数据。在本篇博客中,我们将深入介绍 Scipy 中的信号处理功能,并通过实例演示如何应用这些工具。 1. 信号生成与可视化 首先ÿ…...
【排序篇2】选择排序、计数排序
目录 一、选择排序二、计数排序 一、选择排序 整体思想: 从数组中选出最小值和最大值放在起始位置,直到排序完成 具体步骤: 定义两个变量begin和end为下标,指向数组始末定义要找的最大值的下标为maxi,最小值的下标为…...
重生奇迹mu敏弓加点攻略
1. 选择正确的属性点分配 在重生奇迹mu游戏中敏弓的属性点分配非常重要。建议将主要属性点分配在敏捷和力量上这样可以提高敏弓的攻击力和闪避能力。适当加点在体力和魔力上可以提高敏弓的生存能力和技能释放次数。不要忘记适当加点在智力上可以提高敏弓的技能威力和命中率。 …...
用通俗易懂的方式讲解:一文讲透主流大语言模型的技术原理细节
大家好,今天的文章分享三个方面的内容: 1、比较 LLaMA、ChatGLM、Falcon 等大语言模型的细节:tokenizer、位置编码、Layer Normalization、激活函数等。 2、大语言模型的分布式训练技术:数据并行、张量模型并行、流水线并行、3D …...
通过IP地址识别风险用户
随着互联网的迅猛发展,网络安全成为企业和个人关注的焦点之一。识别和防范潜在的风险用户是维护网络安全的关键环节之一。IP数据云将探讨通过IP地址识别风险用户的方法和意义。 IP地址的基本概念:IP地址是互联网上设备的独特标识符,它分为IP…...
汇编和C语言转换
C语言和汇编语言之间有什么区别 C语言和汇编语言之间存在显著的区别,主要体现在以下几个方面: 抽象层次: 汇编语言:更接近硬件的低级语言,通常与特定的处理器或指令集紧密相关。它提供了对处理器指令的直接控制,允许程序员直接操作硬件资源,如寄存器、内存等。 C语言:…...
【IOS】惯性导航详解(包含角度、加速度、修正方式的api分析)
参考文献 iPhone的惯性导航,基于步态。https://www.docin.com/p-811792664.html Inertial Odometry on Handheld Smartphones: https://arxiv.org/pdf/1703.00154.pdf 惯性导航项目相关代码:https://github.com/topics/inertial-navigation-systems use…...
Self-Attention
前置知识:RNN,Attention机制 在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句子,Attent…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...
