当前位置: 首页 > news >正文

运算电路(1)——加法器

一、引言

        微处理器是由一片或少数几片大规模集成电路组成的中央处理器。这些电路执行控制部件和算术逻辑部件的功能。微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作,是微型计算机的运算控制部分。它可与存储器和外围电路芯片组成微型计算机。微处理器(CPU、MCU、DSP、GPU、NPU等)是最重要的一类集成电路,没有之一。其构成如下图所示:

        其中数据通路的构成如下:

        本文就主要介绍数据通路的相关内容,包括其中的各种复杂运算单元。

二、加法器:一位

2.1 半加器

        半加器作为一个非常经典的电路设计是初学者避不开的一个话题。其本质就是实现了不带进位输入的二进制加法运算,其真值表如下

abcarrysum
0000
0101
1001
1110

        根据真值表我们可以很容易得出:

                                                                carry = a & b ;

                                                                sum = a ^ b ;

        对应的电路结构如下:        

        对应真值表不同的输入情况如下:

2.2 全加器

        有了半加器我们就解决了一位二进制数的加法问题,但是这显然还是不够的,要想实现多位二进制数的加法问题,我们就必须在现有电路的基础上进行改进,首先就是要引入进位输入。

        和之前一样,我们还是先给出真值表

ABCinSumCout
00000
00110
01010
01101
10010
10101
11001
11111

         根据真值表给出逻辑式:
                                                 Sum = A ^ B ^ Cin;
                                                 Cout = ( A & B ) | (( A ^ B ) & Cin);

        其静态CMOS管实现如下:

        对于这样的加法器,我们还是希望能够进行进一步的优化,优化的方向有2个:(1)提高速度(2)缩小面积

        优化的途径如下:

  • 逻辑层优化:重新安排布尔方程
  • 结构层优化:调整整体拓扑结构
  • 电路级优化:优化管级电路
  • 器件级优化:优化晶体管尺寸

三、加法器:多位

3.1 串行进位加法器

3.1.1 构成

        串行进位加法器亦称传播进位加法器(Carry-Propagate Adder,CPA)、行波进位加法器(ripple carry adder)。我们以搭建一个4位的加法器为例,这种加法器的设计思路非常的简单,就是把上一个加法器的进位连接到下一个加法器的进位输入端,具体的设计电路如下:

3.1.2 HDL描述

3.1.3 传播延时

        对于串行进位加法器来说,其关键路径如下图所示: 

        延时计算:tadder_4=t(A0 ,B0→ Co,0 )+t(Co,0 →Co,1 ) +t(Co,1 →Co,2 )+t(Co,2 →S3 )

        它的电路延时与输入值有关。最坏情况之一:A=0001,B=0111。对于N位的串行进位加法器来说,传输延时与位数成线性正比关系,位数越多运算越慢;加法器序列的延时受“进位”计算项而非“和”计算项支配,因此如何缩短“进位”链延时是关键。

3.2 超前进位加法器

3.2.1 理解

        针对串行进位加法器运算速度慢的问题,有人就提出了超前进位加法器的概念。要理解超前进位加法器的原理,我们需要换一个角度来看全加器:

        一个全加器的输入有:数据A、数据B、前级的进位Cin,输出有:和S、进位Cout。我们要做的就是根据对应的输入给出对应的输出。我们知道限制串行进位加法器运算速度的主要问题是进位的运算。这里我们考虑Cout的运算,如果A=B=0,那么无论Cin是0或1,都不会产生进位,所以Cout恒等于0,我们称这种情况为取消(D);如果A=B=1,那么无论Cin是0或1,都会产生进位,所以Cout恒等于1,我们称这种情况为产生(G);如果A和B中有且只有一个为0,那么无论Cout就取决于Cin,Cout = Cin,我们称这种情况为传播(P)

        这样一来,原来的计算公式就可以进行如下变换:

        基于此完成公式的递推:

3.2.2 HDL描述

3.3.3 逻辑门实现

3.3.4 nFET实现

3.3.5 不足

        采用超前进位加法器似乎做到了快速计算的效果,但是却存在扇入过大,使得N值较大时很慢; 扇出过大,亦会显著加大延迟;实现面积随N的增加而快速增加的问题,因此一般适用于N≤4的情况。

3.3 曼彻斯特加法器

3.3.1 原理

3.3.2 电路结构

        对于上图中的电路,每一时刻有且只有1个FET是导通的。考虑到p,g,k只能有一个为1,可以变换电路结构:

3.3.3 动态CMOS

        可以采用动态CMOS实现上述电路:

  • 预充电(\phi=0)  M4导通, M3截止;对负载电容充电,输出被拉至逻辑1
  • 求值(\phi=1)M4截止, M3导通;
  • 优点:速度快,无比逻辑
  • 缺点:需时钟φ控制,输出节点电压保持时间有限(在pi=0,gi=0,φ=1时)

3.3.4 进位链

3.3.5 延迟分析

  • 进位链的延时与链长N的平方成正比,即曼彻斯特链减少了每一级的延时(RC),与N的敏感性却增加了。因此,曼彻斯特进位链一般不超过四阶,常作为宽位加法器的基本运算单元
  • 插入缓冲器可以降低进位链的总延迟,并使延时正比于N。 插入缓冲器的最佳级数取决于反相器的等效电阻及传输管的RC,通常为3~4级

3.4 宽位加法器

        在如今的电子设备中,大多数都是宽位计算机,例如台式计算机多为32bit/64bit、服务器多为64bit、大型机及超级机可达128bit。这就会导致位数↑→通过最长时延路径的门数↑→最高进位计算时延↑→进位链的总延时↑。因此我们需要使宽位加法器的进位链长度平摊→多层(多级)CLA电路。

        我们以基于4位超前进位加法器的宽位加法器为例:

        它的传播延时计算如下:

3.5 进位旁路加法器

3.5.1 原理

        Carry-Bypass Circuits:在一定条件下,使进位绕过加法器的一部 分进行传播,用于宽位加法器的加速。

3.5.2 延时分析

3.6 进位选择加法器

        Carry-Select Adder:采用多个位数较少的加法器,通过 进位选择的方式来构成快速的宽位加法器。

相关文章:

运算电路(1)——加法器

一、引言 微处理器是由一片或少数几片大规模集成电路组成的中央处理器。这些电路执行控制部件和算术逻辑部件的功能。微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作,是微型计算机的运算控制部分。它可与存储器和外围电路芯片…...

ESP32-WIFI(Arduino)

ESP32-WIFI Wi-Fi是一种基于IEEE 802.11标准的无线局域网技术,是Wi-Fi联盟制造商的商标作为产品的品牌认证。它可以让电脑、手机、平板电脑等设备通过无线信号连接到互联网 。 在无线网络中,AP(Access Point)和 STA(St…...

【网络虚拟化】网络设备常见冗余方式——堆叠、M-Lag、DRNI

网络设备常见冗余设计——堆叠、M-Lag、DRNI 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 网络设备常见冗余设计——堆叠、M-Lag、DRNI 网络设备常见冗余设计——堆叠、M-Lag、DRNI前言一、网络设备虚拟化二、堆叠技术1.技术原理2.…...

arm的侏罗纪二 cache学习

个人觉得inner shareable和outer shareable;POU和POC 是难点,慢慢学习吧。 inner shareable是cluster内 outer shareable是cluster之间 参考文献: 深入学习Cache系列 1: 带着几个疑问,从Cache的应用场景学起 https://www.eet-c…...

Protecting Intellectual Property of Deep NeuralNetworks with Watermarking

保护深度神经网络的知识产权与数字水印技术 ABSTRACT 深度学习是当今人工智能服务的关键组成部分,在视觉分析、语音识别、自然语言处理等多个任务方面表现出色,为人类提供了接近人类水平的能力。构建一个生产级别的深度学习模型是一项非常复杂的任务&a…...

c++学习笔记-STL案例-机房预约系统1-准备工作

前言 准备工作包括:需求分析、项目创建、主菜单实现、退出功能实现 目录 1 机房预约系统需求 1.1 简单介绍 1.2 身份介绍 1.3 机房介绍 1.4 申请介绍 1.5 系统具体要求 1.6 预约系统-主界面思维导图 2 创建项目 2.1 创建项目 2.2 添加文件 ​编辑 3 创建…...

AnnData:单细胞和空间组学分析的数据基石

AnnData:单细胞和空间组学分析的数据基石 今天我们来系统学习一下单细胞分析的标准数据类型——AnnData! AnnData就是有注释的数据,全称是Annotated Data。 AnnData是为了矩阵类型数据设计的,也就是长得和表格一样的数据。比如…...

C语言中的 `string.h` 头文件包含的函数

C语言中的 string.h 头文件包含了许多与字符串或数字相关的函数。这些函数可以用于字符串的复制、连接、搜索、比较等操作。 常用字符串函数 函数名功能strlen()返回字符串的长度strcpy()将一个字符串复制到另一个字符串中strncpy()将最多 n 个字符从一个字符串复制到另一个字…...

kotlin的抽象类和抽象方法

在 Kotlin 中,抽象类和抽象方法是面向对象编程中的概念,用于实现抽象和多态性。抽象类无法实例化,这意味着我们无法创建抽象类的对象。与其他类不同,抽象类总是打开的,因此我们不需要使用open关键字。 抽象类&#xff…...

2022年面经记录(base杭州)

duandian科技(笔试未通过) 笔试题:leetCode热题第20题有效的括号 面后感:没怎么刷算法题,js 基础不扎实 laiweilai(三面未通过) 一面:笔试题 写一个函数,获取url中的指定…...

安装Docker图形管理界面portainer

安装Docker图形管理界面portainer 映射data文件夹根据自己环境更换 docker run -d --name portainer -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v /yourpath/docker/portainer:/data --restartalways portainer/portainer-ce:latest好好享受吧&#xff01…...

Linux学习记录——사십 高级IO(1)

文章目录 1、IO2、同、异步IO(5种IO类型)3、其它高级IO4、非阻塞IO 其它IO类型的实现在这篇之后的三篇 1、IO input,output。调用read或recv接口时,如果对方长时间不向我方接收缓冲区拷贝数据,我们的进程就只能阻塞&a…...

【代码随想录】2

数组篇 二分查找 int search(int* nums, int numsSize, int target) { int left0; int rightnumsSize-1; while(left<right) {int mlddle(leftright)/2;if(nums[mlddle]>target){rightmlddle-1;}else if(nums[mlddle]<target){leftmlddle1;}else{return mlddle;}} r…...

TCP性能分析

ref&#xff1a; TCP性能和发送接收窗口、Buffer的关系 | plantegg...

RibbonGroup 添加QRadioButton

RibbonGroup添加QRadioButton&#xff1a; QRadioButton * pRadio new QRadioButton(tr("Radio")); pRadio->setToolTip(tr("Radio")); groupClipboard->addWidget(pRadio); connect(pRadio, SIGNAL(clicked(…...

一篇文章掌握WebService服务、工作原理、核心组件、主流框架

目录 1、WebService定义 解决问题&#xff1a; 2、WebService的工作原理 2.1 实现一个完整的Web服务包括以下步骤 2.2 调用方式 3、Web Service的核心组件 3.1 XML 3.2 SOAP 3.3 WSDL 3.4 UDDI 4、主流框架 4.1 AXIS(已淘汰) 4.2 XFire 4.3 CXF 5、Soap协议详解…...

观成科技-加密C2框架EvilOSX流量分析

工具简介 EvilOSX是一款开源的&#xff0c;由python编写专门为macOS系统设计的C2工具&#xff0c;该工具可以利用自身释放的木马来实现一系列集成功能&#xff0c;如键盘记录、文件捕获、浏览器历史记录爬取、截屏等。EvilOSX主要使用HTTP协议进行通信&#xff0c;通信内容为特…...

PCL 计算异面直线的距离

目录 一、算法原理二、代码实现三、结果展示四、相关链接本文由CSDN点云侠原创,PCL 计算异面直线的距离,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 设置直线 A B AB A...

【数字人】9、DiffTalk | 使用扩散模型基于 audio-driven+对应人物视频 合成说话头(CVPR2023)

论文&#xff1a;DiffTalk: Crafting Diffusion Models for Generalized Audio-Driven Portraits Animation 代码&#xff1a;https://sstzal.github.io/DiffTalk/ 出处&#xff1a;CVPR2023 特点&#xff1a;需要音频对应人物的视频来合成新的说话头视频&#xff0c;嘴部抖…...

完成源示例

本主题演示如何创作和使用自己的完成源类&#xff0c;类似于 .NET 的 TaskCompletionSource。 completion_source 示例的源代码 下面的列表中的代码作为示例提供。 其目的是说明如何编写自己的版本。 例如&#xff0c;支持取消和错误传播不在此示例的范围内。 #include <w…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...