当前位置: 首页 > news >正文

Qt中QByteArray之元素访问

        访问QByteArray类对象中的某个元素主要有4种方式,分别为[]、at()、 data[]和constData[]。其中,[]和data]]方式为可读可写,at()和constData[]方式仅为可读。如果只是进行读操作,则通过at()和constData[]方式的访问速度最快,因为避免了复制处理。at()可以比operator [0更快,就是因为前者不会发生深层复制。

#include <QCoreApplication>
#include <qDebug>
int main(int argc, char *argv[]){
QCoreApplication a(argc, argv);
QByteArray bal ("Hello");
if('\0'==bal[5])printf ("bal [5]=\'\\٥\'\n");
QByteArray ba;
ba.resize(6);
ba [0] = 0x3c;
ba [1] = 0xb8;
ba [2] = 0x64;
ba [3] = 0x18;
ba[4] = 0xca;
ba.data () [5] = 0x31;
qDebug ()<<" []"<<ba[2]; //[] d 
dqDebug ()<<"at ()"<<ba.at (2); //at() d
qDebug ()<<"data () "<<ba.data () [2]; //data () d
dqDebug ()<<"constData ()"<<ba.constData () [2]; //constData () d
dqDebug ()<<"constData ()"<<ba.constData () [5]; //constData () 1
return a.exec ();
}

qDebug()会输出ba[2]对应的字符,ASCII码为Ox64的字符是'd'。 

相关文章:

Qt中QByteArray之元素访问

访问QByteArray类对象中的某个元素主要有4种方式,分别为[]、at()、 data[]和constData[]。其中&#xff0c;[]和data]]方式为可读可写&#xff0c;at()和constData[]方式仅为可读。如果只是进行读操作&#xff0c;则通过at()和constData[]方式的访问速度最快&#xff0c;因为避…...

java实现教务管理系统

git地址&#xff1a;https://gitee.com/myshort-term/school-management 1.系统简介 开发教务管理系统程序&#xff0c;设计了ems&#xff08;EMSApp&#xff09;、dao&#xff08;AssignmentDAO、CourseDAO、DeptDAO、ScoreDAO、UserDAO、EmailDAO&#xff09;、domain&#…...

NPS配置https访问web管理页面

因为NPS默认也支持http的访问&#xff0c;所以在部署完后就一直没在意这个事情。 因为服务器是暴露在公网内的&#xff0c;所以还是要安全一点才行。不然一旦远控的机器被破解了就很危险了 一、使用nginx反向代理访问 1、首先在nps的配置文件里关闭使用https选项&#xff0c;…...

nginx和CDN应用

一、代理的工作机制 1&#xff0e;代替客户机向网站请求数据&#xff0c;从而可以隐藏用户的真实IP地址。 2&#xff0e;将获得的网页数据&#xff08;静态 Web 元素&#xff09;保存到缓存中并发送给客户机&#xff0c;以便下次请求相同的数据时快速响应。 二、代理服务器的…...

Keil5如何生成反汇编文件

Keil5如何生成反汇编文件 在Keil5界面下点击选项&#xff0c;选择“User”&#xff0c;勾选“After Build/Rebuild”中“RUN #1”&#xff0c;复制fromelf --text -a -c --outputxxx.dis xxx.axf 在Linker栏中找到“Linker Control string”里最后-o后的.axf文件&#xff0c;将…...

网络地图服务(WMS)详解

文章目录 1.概述2.GetCapabilities3.GetMap4.GetFeatureInfo 阅读本文之前可参考前文&#xff1a;《地图服务器GeoServer的安装与配置》与《GeoServer发布地图服务&#xff08;WMS、WFS&#xff09;》。 1.概述 经过前文的介绍&#xff0c;相信我们对WMS/WFS服务已经有了一个非…...

【排序篇3】快速排序、归并排序

目录 一、快速排序1.1 递归1.2 非递归 二、归并排序2.1 递归2.2 非递归 一、快速排序 1.1 递归 快速排序的递归采用二叉树的前序遍历的思路&#xff0c;单趟排序先确定好一个元素的位置&#xff0c;然后往后递归再确定其他子区域内的某个元素的位置&#xff0c;直到只有一个元…...

Python中的@property

在 Python 中&#xff0c;property 是一种装饰器&#xff0c;用于将一个方法转换成只读属性。通过使用 property 装饰器&#xff0c;你可以定义一个类的方法&#xff0c;使其在访问时可以像访问属性一样&#xff0c;而不是通过方法调用。 下面是一个简单的例子来说明 property …...

二叉树基础oj练习(单值二叉树、相同的树、二叉树的前序遍历)

讲了这么多数据结构相关的知识(可以看我的数据结构文章专栏): 抓紧刷题巩固一下了 目录 1.单值二叉树 题目描述 思路1 代码1 思路2 代码2 2.相同的树 题目描述 思路 代码 3.二叉树的前序遍历 代码 思路 1.单值二叉树 965. 单值二叉树 - 力扣&#xff08;LeetCod…...

自动化创建ETX用户帐号

在芯片设计行业&#xff0c;ETX是常见的远程访问环境。用户在通过ETX访问远程环境前必须首先加入ETX系统&#xff0c;然后通过profile分配相关的环境的访问权限。 通常这些操作在ETX WEB页面手工操作&#xff0c;如果我们期望实现用户帐号注册全自动化&#xff0c;就需要将以上…...

Android 实现集合去重的方法

方法一&#xff1a;使用HashSet 将集合转换为HashSet。 Set<String> set new HashSet<>(list);将HashSet转换回List。 List<String> uniqueList new ArrayList<>(set);方法二&#xff1a;使用Java 8的Stream API 将列表转换为Stream。 Stream&l…...

【Vue3】2-12 : 【案例】搜索关键词加筛选条件的综合

本书目录&#xff1a;点击进入 一、【案例】搜索关键词加筛选条件的综合 1.1、逻辑 1.2、效果 1.3、json数据 - 02-data.json 1.4、代码 一、【案例】搜索关键词加筛选条件的综合 1.1、逻辑 计算属性 - 绑定list&#xff0c;并过滤 input 双向绑定 - 当input改变时&…...

unity小程序websocket:nginx配置https (wss)转http (ws)及其他问题解决

目录 前言 实际运用场景 处理流程如下 nginx配置ssl和wss 配置过程中遇到的问题 1、无法连接服务器 2、通过IP可以访问&#xff0c;域名却不行 问题描述 解决 3、如何判断该域名是否备案了 前言 为了服务器网络的通用性&#xff0c;我们在实现移动端的游戏转微信小程序…...

MySql数据库对接Orcal数据库,需要考虑的前提问题

1.主表 从表的表关系&#xff1b;主键id 的关联问题&#xff1b; 2.字段类型的一致性问题&#xff08;备注&#xff1a;像varchar类型的一点要谨防数据过长抛错&#xff09;&#xff1b; 3.实体类字段两表一致性问题&#xff1b; 4.入表不为空问题&#xff0c;判空尽量在实体…...

K8S的存储卷---数据卷

容器内的目录和宿主机的目录进行挂载 容器在系统上的生命周期是短暂的。delete&#xff0c;K8S用控制器创建的pod&#xff0c;delete相当于重启&#xff0c;容器的状态也会恢复到初始状态。一旦回到初始状态&#xff0c;所有的后天编辑的文件都会消失 容器和节点之间创建一个…...

【量化交易故事】小明开启了量化创业之旅-01

故事开始于2023年的春天&#xff0c;小明是一位对金融市场充满热情的IT工程师。在经历了数次基于主观判断和个人情绪进行投资却收获平平后&#xff0c;他意识到传统交易方式中的人为因素难以避免&#xff0c;而这往往成为影响投资决策稳定性和准确性的关键障碍。在一次偶然的机…...

ffmpeg写YUV420文件碰到阶梯型横线或者条纹状画面的原因和解决办法

版权声明&#xff1a;本文为CSDN博主「文三~」的原创文章&#xff0c;遵循CC 4.0 BY-SA版权协议&#xff0c;转载请附上原文出处链接及本声明。 原文链接&#xff1a;https://blog.csdn.net/asdasfdgdhh/article/details/112831581 看到了&#xff0c;转载&#xff0c;留着备份…...

案例:新闻数据加载

文章目录 介绍相关概念相关权限约束与限制完整示例 代码结构解读构建主界面数据请求下拉刷新总结 介绍 本篇Codelab是基于ArkTS的声明式开发范式实现的样例&#xff0c;主要介绍了数据请求和touch事件的使用。包含以下功能&#xff1a; 数据请求。列表下拉刷新。列表上拉加载…...

数学的雨伞下:理解世界的乐趣

这本书没有一个公式&#xff0c;却讲透了数学的本质&#xff01; 《数学的雨伞下&#xff1a;理解世界的乐趣》。一本足以刷新观念的好书&#xff0c;从超市到对数再到相对论&#xff0c;娓娓道来。对于思维空间也给出了一个更容易理解的角度。 作者&#xff1a;米卡埃尔•洛奈…...

补充 vue3用户管理权限(路由控制)

之前有人问我 &#xff0c;如果是二级路由如何添加&#xff0c;这里我做一个补充吧。直接拿方法去用就行。也不做解释了。稍微看下就能看懂了 假设&#xff0c;后端返回给我们一个数据 [“/defa”,"/defa/defa1"] 这样的一个路由表&#xff0c;我们就需要通过这个路…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...