TRB 2024论文分享:基于生成对抗网络和Transformer模型的交通事件检测混合模型
TRB(Transportation Research Board,美国交通研究委员会,简称TRB)会议是交通研究领域知名度最高学术会议之一,近年来的参会人数已经超过了2万名,是参与人数和国家最多的学术盛会。TRB会议几乎涵盖了交通领域的所有主题,主要包括公路、铁路、水运、航空、管道等诸多领域,接收来自交通系统、交通工程、交通政策、交通管理、交通实际操作、政府研究、学术研究和工业界最新的研究成果。TRB会议的论文反映了交通领域的研究前沿,具有广泛的参考价值。
本文主要介绍我们在交通领域被TRB 2024接收的关于交通事件检测的研究工作,论文的题目为《A Hybrid Model for Traffic Incident Detection based on Generative Adversarial Networks and Transformer Model》,第一作者为陆新颖。交通事件检测是智能交通系统的核心任务之一,由于交通数据中大部分为无事件样本,有事件样本是少数,因此有事件样本和无事件样本的数目严重不平衡,此外,如何获取大规模交通数据集也是一个非常重大的挑战。为了解决上述问题,本文提出了一种结合Transformer和生成对抗网络(GANs)的混合模型。实验表明本文提出的混合模型既能够扩大数据集中有事件样本的数目,实现有事件样本与无事件样本的平衡,又能够全面提升交通事件检测的性能。
1. 背景与挑战
本文聚焦于交通事件检测,强调了在智能交通系统中交通事件检测的重要性。交通事件检测面临的挑战主要涉及获取大规模且平衡的数据集、传统算法的限制,以及深度学习模型对实际数据的依赖性。特别是数据集不平衡可能导致性能偏差。为解决这些问题,本文聚焦于严重不平衡与规模小的数据集情况,对交通事件检测任务进行一系列的探索,主要涉及两个方面:
(1) 数据集小和样本不平衡问题
论文强调交通事件数据集普遍存在严重的样本不平衡问题,即有事件样本与无事件样本的比例严重失衡。这种不平衡可能导致模型在对事件样本的识别上表现不佳,因为模型更容易被训练为预测正常情况。
(2) 应用深度学习模型先进性
针对交通事件检测任务,论文倡导采用深度学习模型,特别是Transformer模型。深度学习模型相较于传统机器学习方法在处理复杂非线性关系上具有显著优势。
2. 方法
本文提出的基于GANs和Transformer的混合模型的整体架构如图1所示。GANs在解决输入模型中数据不平衡和样本不足的挑战中起着关键作用。另一方面,Transformer模型擅长有效捕捉全局上下文依赖,促进对输入序列语义含义的全面理解。这种混合模型的独特之处在于巧妙地利用GANs的对抗特性,不断训练和优化以生成可靠的新样本,从而丰富样本多样性并增加数据量。因此,训练后的模型表现出更强的性能,更适应在真实世界中遇到的复杂且不断变化的数据分布。此外,通过整合Transformer模型的特性,混合方法缓解了传统顺序模型常见的梯度消失或梯度爆炸等潜在问题。这种特性增强了模型在训练过程中的鲁棒性,并使其在处理长程依赖性方面表现出色。总之,所提出的混合模型巧妙地结合了GANs和Transformer的优势,有效解决了与数据集小和样本不平衡有关的挑战。此外,该模型在理解输入序列的语义信息和管理全局依赖性方面表现出色。这种融合使其成为一个在各种实际应用中具有巨大潜力的强大工具。

图1 本文模型的架构
3. 实验结果
实验使用的数据集包括PeMS数据集、I-880数据集、Whitemud Drive数据集、NGSIM数据集。交通事件检测算法的性能评价指标包括检测率(DR)、误报率(FAR)、分类正确率(CR)以及ROC曲线下的面积(AUC)。本文提出的混合模型将生成对抗模型与Transformer模型结合在一起,其中生成对抗模型负责将不平衡的数据集增强为平衡的数据集。为了验证在交通事件检测中平衡数据集的重要性,生成对抗模型被用于将四个数据集增强到不同的有事件与无事件样本的比例。然后,使用对比方法分别在原始数据集和不同比例的增强数据集上进行比较实验,旨在验证进行交通事件检测时平衡数据集的重要性。实验结果表明模型在平衡数据集上训练得到的模型具有更好的检测性能,尤其是在假阳率方面,可使之显著降低。实验结果还表明,本文提出的模型在交通事件检测的各指标上都有优越的表现。
4. 总结
本文提出的结合Transformer和生成对抗网络(GANs)的混合模型有效地解决了交通事件检测中数据集样本严重不平衡的问题,同时本文提出的混合模型也可用来扩充交通数据集的规模,实现通过算法来扩充数据样本的目标,从而可以节约交通数据采集的经济成本和时间成本。更为重要的是,本文提出的混合模型全面提升了交通事件检测的性能,有着良好的实际应用价值。
相关文章:
TRB 2024论文分享:基于生成对抗网络和Transformer模型的交通事件检测混合模型
TRB(Transportation Research Board,美国交通研究委员会,简称TRB)会议是交通研究领域知名度最高学术会议之一,近年来的参会人数已经超过了2万名,是参与人数和国家最多的学术盛会。TRB会议几乎涵盖了交通领域…...
Golang 打包
构建/打包 使用 Go 的构建命令: go build在包含 main 函数的包的目录下执行,它会生成一个可执行文件。文件名默认与包所在的目录名相同,但也可以使用 -o 选项来指定输出的文件名 交叉编译 Windows 环境下进行交叉编译以构建其他平台的可执…...
力扣每日一练(24-1-14)
做过类似的题,一眼就是双指针,刚好也就是题解。 if not nums:return 0p1 0 for p2 in range(1, len(nums)):if nums[p2] ! nums[p1]:p1 1nums[p1] nums[p2]return p1 1 根据规律,重复的数字必定相连,那么只要下一个数字与上一…...
K 个一组翻转链表(链表反转,固定长度反转)(困难)
优质博文:IT-BLOG-CN 一、题目 给你链表的头节点head,每k个节点一组进行翻转,请你返回修改后的链表。 k是一个正整数,它的值小于或等于链表的长度。如果节点总数不是k的整数倍,那么请将最后剩余的节点保持原有顺序。…...
Spring Boot - 利用Resilience4j-RateLimiter进行流量控制和服务降级
文章目录 Resilience4j概述Resilience4j官方地址Resilience4j-RateLimiter微服务演示Payment processorPOM配置文件ServiceController Payment servicePOMModelServiceRestConfigController配置验证 探究 Rate Limiting请求三次 ,观察等待15秒连续访问6次 Resilienc…...
概率论与数理统计————1.随机事件与概率
一、随机事件 随机试验:满足三个特点 (1)可重复性:可在相同的条件下重复进行 (2)可预知性:每次试验的可能不止一个,事先知道试验的所有可能结果 (3)不确定…...
【生存技能】git操作
先下载git https://git-scm.com/downloads 我这里是win64,下载了相应的直接安装版本 64-bit Git for Windows Setup 打开git bash 设置用户名和邮箱 查看设置的配置信息 获取本地仓库 在git bash或powershell执行git init,初始化当前目录成为git仓库…...
docker 将镜像打包为 tar 包
目录 1 实现 1 实现 要将镜像导出为.tar包,可以使用Docker命令行工具进行操作。下面是导出镜像的步骤: 首先,使用以下命令列出当前系统上的镜像,并找到要导出的镜像的ID或名称: docker images使用以下命令将镜像导出为…...
341. 最优贸易(dp思想运用,spfa,最短路)
341. 最优贸易 - AcWing题库 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。 任意两个城市之间最多只有一条道路直接相连。 这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计…...
FineBI实战项目一(19):每小时订单笔数分析开发
点击新建组件,创建下每小时订单笔数组件。 选择饼图,拖拽cnt(总数)到角度,拖拽hourstr到颜色,调节内径。 修改现在的文字 拖拽组件到仪表盘。 效果如下:...
What is `@RequestBody ` does?
RequestBody 是SpringMVC框架中的注解,通常与POST、PUT等方法配合使用。当客户端发送包含JSON或XML格式数据的请求时,可以通过该注解将请求体内容绑定到Controller方法参数上 作用 自动反序列化: SpringMVC会根据RequestBody注解的参数类型&…...
Windows安装Rust环境(详细教程)
一、 安装mingw64(C语言环境) Rust默认使用的C语言依赖Visual Studio,但该工具占用空间大安装也较为麻烦,可以选用轻便的mingw64包。 1.1 安装地址 (1) 下载地址1-GitHub:Releases niXman/mingw-builds-binaries GitHub (2) 下载地址2-W…...
Marin说PCB之传输线损耗---趋肤效应和导体损耗01
大家在做RF上的PCB走线或者是车载相机的上走线的时候经常会听那些硬件工程师们说你这个走线一定要保证50欧姆的阻抗匹配啊,还有就是记得加粗走做隔层参考。 有的公司的EE硬件同事会很贴心的把RF走线的注意事项给你备注在原理图上或者是layoutguide上,遇到…...
八:分布式锁
1、为什么要使用分布式锁 锁是多线程代码中的概念,只有多任务访问同一个互斥的共享资源时才需要锁。单机应用开发时一般使用synchronized或lock。多线程的运行都是在同一个JVM之下。应用是分布式集群,属于多JVM的工作环境,JVM之间已经无法通过…...
示例:php将文本内容写入一个文件(面向过程写法)
一、封装2个函数,读写文件 /*** desc 读取文件内容* param string $filename* return array*/ private function readContent(string $filename): array {$text file_get_contents($filename);if (!$text) {return [];}$result json_decode($text,true);return…...
Flutter开发进阶之并发操作数据库
Flutter开发进阶之并发操作数据库 尽管 Flutter 本身不包含任何数据库功能,但可以使用各种第三方库和插件来在 Flutter 应用程序中实现数据库功能; 以下将使用sqflite作为例子,sqflite允许在 Flutter 应用程序中执行 SQL 查询,创…...
docker应用:搭建uptime-kuma监控站点
简介:Uptime Kuma是一个易于使用的自托管监控工具,它的界面干净简洁,部署和使用都非常方便。 历史攻略: docker:可视化工具portainer docker-compose:搭建自动化运维平台Spug 开源地址: ht…...
在illustrator中按大小尺寸选择物体 <脚本 018>
在Illustrator中我们可以依据对象的属性 如:填充颜色、描边颜色或描边宽度来选择相同属性的对象,但是Illustrator中没有根据不同大小尺寸来选择对象的功能,下面介绍的就是根据大小尺寸选择对象的脚本。 1、下面是当前画板中的所有对象&#…...
leetcode - 934. Shortest Bridge
Description You are given an n x n binary matrix grid where 1 represents land and 0 represents water. An island is a 4-directionally connected group of 1’s not connected to any other 1’s. There are exactly two islands in grid. You may change 0’s to 1…...
k8s的存储卷、数据卷
容器内的目录和宿主机目录进行挂载。 容器在系统上的生命周期是短暂的。 k8s用控制器创建的pod。delete相当于重启。容器的状态也会恢复到初始状态。一旦恢复到初始状态,所有的后天编辑的文件都会消失 容器和节点之间创建一个可以持久化保存容器内文件的存储卷。…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...
