当前位置: 首页 > news >正文

AI小程序添加深度合成类目解决办法

基于文言一心和gpt等大模型做了一个ai助理小程序,在提交“一点AI助理”小程序时,审核如下:

失败原因1

审核失败原因

你好,你的小程序涉及提供提供文本深度合成技术 (如: AI问答) 等相关服务,请补充选择:深度合成-AI问答类目。

修改指引

【深度合成-AI绘画、深度合成-AI换脸、深度合成-AI问答】修改指引说明

按照指引添加类目,但添加类目的时候,要求我们提供一系列的证明文件。

解决办法:

选择资质时选择2.1类,这个类别需要提供两个文件。

①技术主体的《互联网信息服务算法备案》(算法类型为“生成合成类(深度合成)”)或《互联网信息服务算法备案》(算法类型为“生成合成类”)在审批中的系统截图
②应用/小程序主体与技术主体的合作协议(协议需含【算法名称】或【应用产品】或【备案编号】相关内容)

1、技术主体的算法备案

  • 进入互联网信息服务算法备案系统:https://beian.cac.gov.cn/#/searchResult

  • 搜索技术主体「百度」

  • 找到「文心大模型算法-2」的备案记录并截图

2、算法合作协议

  • 使用与小程序备案主体一致的身份注册一个百度账号
  • 登录百度智能云控制台,进入合同管理页面:百度智能云-管理中心

  •   点击生成合同,选择订单合同

  •   勾选当时开通ERNIE-Bot或者ERNIE-Bot-turbo推理服务的订单(只有百度自研的文心大模型的产品配置才会展示算法名称),点击下一步

  • 按实际情况,填写地址、联系人、电话,点击生成草稿合同

  • 刷新页面,点击生成的草稿合同,可以看到配置列展示了模型名称和算法名称

  • 点击转成正式合同,刷新页面,最后下载正式合同即可

  • 下载的正式合同中有百度智能云的电子公章,可以作为合作协议上传至应用商店/微信小程序平台

相关文章:

AI小程序添加深度合成类目解决办法

基于文言一心和gpt等大模型做了一个ai助理小程序,在提交“一点AI助理”小程序时,审核如下: 失败原因1 审核失败原因 你好,你的小程序涉及提供提供文本深度合成技术 (如: AI问答) 等相关服务,请补充选择:深度…...

C/C++ BM6判断链表中是否有环

文章目录 前言题目解决方案一1.1 思路阐述1.2 源码 解决方案二2.1 思路阐述2.2 源码 总结 前言 做了一堆单链表单指针的题目,这次是个双指针题,这里双指针的作用非常明显。 题目 判断给定的链表中是否有环。如果有环则返回true,否则返回fal…...

【Java 设计模式】结构型之适配器模式

文章目录 1. 定义2. 应用场景3. 代码实现结语 适配器模式(Adapter Pattern)是一种结构型设计模式,用于将一个类的接口转换成客户端期望的另一个接口。这种模式使得原本由于接口不兼容而不能一起工作的类可以一起工作。在本文中,我…...

使用函数计算,数禾如何实现高效的数据处理?

作者:邱鑫鑫,王彬,牟柏旭 公司背景和业务 数禾科技以大数据和技术为驱动,为金融机构提供高效的智能零售金融解决方案,服务银行、信托、消费金融公司、保险、小贷公司等持牌金融机构,业务涵盖消费信贷、小…...

卷积和滤波对图像操作的区别

目录 问题引入 解释 卷积 滤波 问题引入 卷积和滤波是很相似的,都是利用了卷积核进行操作 那么他们之间有什么区别呢? 卷积:会影响原图大小 滤波:不会影响原图大小 解释 卷积 我们用这样一段代码来看 import torch.nn as …...

李沐深度学习-线性回归从零开始

# 核心Tensor,autograd import torch from IPython import display import numpy as np import random from matplotlib import pyplot as pltimport syssys.path.append(路径) from d2lzh_pytorch import * backward()函数:一次小批量执行完在进行反向传播 线性回归…...

CentOS 8.5 安装图解

特特特别的说明 CentOS发行版已经不再适合应用于生产环境,客观条件不得不用的话,优选7.9版本,8.5版本次之,最次6.10版本(比如说Oracle 11GR2就建议在6版本上部署)! 引导和开始安装 选择倒计时结…...

好用的流程图工具

分享工作中常用的装逼工具 目前市面上的流程图或者思维导图工具挺多的,但是有的会限制使用数量或者收费,典型的有processon、Xmind,推荐今天Mermaid(官网)。 快速上手 中文教程:Mermaid 初学者用户指南 | Mermaid 中文网。我们选择…...

数据结构:链式栈

stack.h /* * 文件名称&#xff1a;stack.h * 创 建 者&#xff1a;cxy * 创建日期&#xff1a;2024年01月18日 * 描 述&#xff1a; */ #ifndef _STACK_H #define _STACK_H#include <stdio.h> #include <stdlib.h>typedef struct stack{int data…...

openssl3.2 - 官方demo学习 - mac - gmac.c

文章目录 openssl3.2 - 官方demo学习 - mac - gmac.c概述笔记END openssl3.2 - 官方demo学习 - mac - gmac.c 概述 使用GMAC算法, 设置参数(指定加密算法 e.g. AES-128-GCM, 设置iv) 用key执行初始化, 然后对明文生成MAC数据 官方注释给出建议, key, iv最好不要硬编码出现在程…...

HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍

HugggingFace 推理 API、推理端点和推理空间相关模型部署和使用以及介绍。 Hugging Face是一家开源模型库公司。 2023年5月10日&#xff0c;Hugging Face宣布C轮1亿美元融资&#xff0c;由Lux Capital领投&#xff0c;红杉资本、Coatue、Betaworks、NBA球星Kevin Durant等跟投…...

python的tabulate包在命令行下输出表格不对齐

用tabulate可以在命令行下输出表格。 from tabulate import tabulate# 定义表头 headers [列1, 列2, 列3]# 每行的内容 rows [] rows.append((张三,数学,英语)) rows.append((李四,信息科技,数学))# 使用 tabulate 函数生成表格 output tabulate(rows, headersheaders, tab…...

LLM之幻觉(二):大语言模型LLM幻觉缓减技术综述

LLM幻觉缓减技术分为两大主流&#xff0c;梯度方法和非梯度方法。梯度方法是指对基本LLM进行微调&#xff1b;而非梯度方法主要是在推理时使用Prompt工程技术。LLM幻觉缓减技术&#xff0c;如下图所示&#xff1a; LLM幻觉缓减技术值得注意的是&#xff1a; 检索增强生成&…...

C# 使用多线程,关闭窗体时,退出所有线程

this.Close(); 只是关闭当前窗口&#xff0c;若不是主窗体的话&#xff0c;是无法退出程序的&#xff0c;另外若有托管线程&#xff08;非主线程&#xff09;&#xff0c;也无法干净地退出&#xff1b;Application.Exit(); 强制所有消息中止&#xff0c;退出所有的窗体&…...

数据结构实验6:图的应用

目录 一、实验目的 1. 邻接矩阵 2. 邻接矩阵表示图的结构定义 3. 图的初始化 4. 边的添加 5. 边的删除 6. Dijkstra算法 三、实验内容 实验内容 代码 截图 分析 一、实验目的 1&#xff0e;掌握图的邻接矩阵的存储定义&#xff1b; 2&#xff0e;掌握图的最短路径…...

Spring Boot整合JUnit

引言 测试是软件开发过程中不可或缺的一环&#xff0c;而JUnit作为Java生态中最流行的测试框架之一&#xff0c;与Spring Boot的整合为开发者提供了一套强大的测试工具。本文将讨论Spring Boot整合JUnit的技术细节、最佳实践以及测试驱动开发&#xff08;TDD&#xff09;的优雅…...

uniapp写小程序实现清除缓存(存储/获取/移除/清空)

在uni-app中&#xff0c;可以使用uni.setStorageSync和uni.getStorageSync来进行数据的存储和获取。而移除缓存数据可以使用uni.removeStorageSync&#xff0c;清空缓存数据可以使用uni.clearStorageSync。 以下是使用示例&#xff1a; 存储数据&#xff1a; uni.setStorage…...

js菜单隐藏显示

1、树状结构对应的表: 2、生成menulist的SQL语句 select {"id":"MenuID","parent":"ParentID","FirstLvMenu":"FirstLvMenu", "text":"MenuName","url":"MenuUrl",&quo…...

学习Spring的第五天(Bean的依赖注入)

Bean的依赖注入有两种方式: 一 . 常规Bean的依赖注入 很简单,不过多赘述了,注意ref: 是构造函数或set方法的参数,一般为对象, value: 是构造函数或set方法的参数,一般为值. 看下图 1.1 下面来演示一下集合数据类型的关于Bean的依赖注入 1.1.1这是List的注入(演示泛型为Strin…...

GAN在图像数据增强中的应用

在图像数据增强领域&#xff0c;生成对抗网络&#xff08;GAN&#xff09;的应用主要集中在通过生成新的图像数据来扩展现有数据集的规模和多样性。这种方法特别适用于训练数据有限的情况&#xff0c;可以通过增加数据的多样性来提高机器学习模型的性能和泛化能力。 以下是GAN在…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...