当前位置: 首页 > news >正文

C# 更改Bitmap图像色彩模式

方法一:直接修改RGB的值

首先将BitmapData扫描线上的所有像素复制到字节数组中,然后遍历数组并对每个像素的RGB值进行修改,最后将修改后的像素值复制回BitmapData。这个过程不会影响原始的Bitmap对象,但会改变锁定的位图区域的数据。当完成修改后,应调用UnlockBits()方法释放锁定的位图区域。
 

System.Drawing.Bitmap bitBufferRGB = new System.Drawing.Bitmap("彩色Bitmap图像.jpg");
System.Drawing.Imaging.BitmapData data = bitBufferRGB.LockBits(
new System.Drawing.Rectangle(System.Drawing.Point.Empty, bitBufferRGB.Size),
System.Drawing.Imaging.ImageLockMode.ReadWrite, bitBufferRGB.PixelFormat);//获取内存
IntPtr pData = data.Scan0;
int bytes = data.Stride * bitBufferRGB.Height;
byte[] rgbValues = new byte[bytes];// Copy the RGB values into the array.
System.Runtime.InteropServices.Marshal.Copy(pData, rgbValues, 0, bytes);for (int y = 0; y < bitBufferRGB.Height; y++)
{for (int x = 0; x < bitBufferRGB.Width; x++){// 获取像素(x, y)在数组中的索引。int index = y * data.Stride + x * 3;// 修改RGB值。rgbValues[index] = (byte)(rgbValues[index] * 0.9); // 修改红色分量rgbValues[index + 1] = (byte)(rgbValues[index + 1] * 0.7); // 修改绿色分量rgbValues[index + 2] = (byte)(rgbValues[index + 2] * 0.9); // 修改蓝色分量}
}// Copy the modified RGB values back to the bitmap.
System.Runtime.InteropServices.Marshal.Copy(rgbValues, 0, pData, bytes);//解锁及释放资源
bitBufferRGB.UnlockBits(data);
bitBufferRGB.Dispose();

方法二:更换RGB的值位置

更换R和B的位置

System.Drawing.Bitmap bitBufferRGB = new System.Drawing.Bitmap("彩色Bitmap图像.jpg");
System.Drawing.Imaging.BitmapData data = bitBufferRGB.LockBits(
new System.Drawing.Rectangle(System.Drawing.Point.Empty, bitBufferRGB.Size),
System.Drawing.Imaging.ImageLockMode.ReadWrite, bitBufferRGB.PixelFormat);//获取内存
IntPtr pData = data.Scan0;
int bytes = data.Stride * bitBufferRGB.Height;
byte[] rgbValues = new byte[bytes];
System.Runtime.InteropServices.Marshal.Copy(pData, rgbValues, 0, bytes);for (int i = 0; i < height; i++)
{for (int ji = 0; ji < width; ji++){int index = i * width + ji;// 每个像素占用三个字节// 红色字节rgbValues[index * 3] = System.Runtime.InteropServices.Marshal.ReadByte(pData, index * 3 + 2);// 绿色字节rgbValues[index * 3 + 1] = System.Runtime.InteropServices.Marshal.ReadByte(pData, index * 3 + 1);// 蓝色字节rgbValues[index * 3 + 2] = System.Runtime.InteropServices.Marshal.ReadByte(pData, index * 3);}
}
System.Runtime.InteropServices.Marshal.Copy(rgbValues, 0, pData, bytes);//解锁及释放资源
bitBufferRGB.UnlockBits(data);
bitBufferRGB.Dispose();

 

 

 

 

 

相关文章:

C# 更改Bitmap图像色彩模式

方法一&#xff1a;直接修改RGB的值 首先将BitmapData扫描线上的所有像素复制到字节数组中&#xff0c;然后遍历数组并对每个像素的RGB值进行修改&#xff0c;最后将修改后的像素值复制回BitmapData。这个过程不会影响原始的Bitmap对象&#xff0c;但会改变锁定的位图区域的数…...

5.2 基于深度学习和先验状态的实时指纹室内定位

文献来源 Nabati M, Ghorashi S A. A real-time fingerprint-based indoor positioning using deep learning and preceding states[J]. Expert Systems with Applications, 2023, 213: 118889.&#xff08;5.2_基于指纹的实时室内定位&#xff0c;使用深度学习和前一状态&…...

AIGC时代高效阅读论文实操

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…...

对网站进行打点(不要有主动扫描行为)

什么是打点&#xff1f; 简单来说就是获取一个演习方服务器的控制权限。 目的&#xff1a; 1. 上传一个一句话木马 2. 挖到命令执行 3. 挖到反序列化漏洞 4. 钓鱼 假设对“千峰”网站进行打点&#xff1a; 1. 利用平台 1. 利用各类平台&#xff1a; 天眼查-商业查询平…...

502. IPO(贪心算法+优先队列/堆)

整体思想&#xff1a;在满足可用资金的情况下&#xff0c;选择其中利润最大的业务&#xff0c;直到选到k个业务为止&#xff0c;注意k可能比n大。 每次选择完一个业务&#xff0c;可用资金都会变动&#xff0c;这是可选择的业务也会变化&#xff0c;因此每次将可选择的业务放在…...

设计模式篇---中介者模式

文章目录 概念结构实例总结 概念 中介者模式&#xff1a;用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显示地相互引用&#xff0c;从而使其耦合松散&#xff0c;而且可以独立地改变它们之间的交互。 就好比世界各个国家之间可能会产生冲突&#xff0c;但是当产…...

双端Diff算法

双端Diff算法 双端Diff算法指的是&#xff0c;在新旧两组子节点的四个端点之间分别进行比较&#xff0c;并试图找到可复用的节点。相比简单Diff算法&#xff0c;双端Diff算法的优势在于&#xff0c;对于同样的更新场景&#xff0c;执行的DOM移动操作次数更少。 简单 Diff 算法…...

react+antd,Table表头文字颜色设置

1、创建一个自定义的TableHeaderCell组件&#xff0c;并设置其样式为红色 const CustomTableHeaderCell ({ children }) > (<th style{{ color: "red" }}>{children}</th> ); 2、将CustomTableHeaderCell组件传递到Table组件的columns属性中的titl…...

2024年1月18日Arxiv最热NLP大模型论文:Large Language Models Are Neurosymbolic Reasoners

大语言模型化身符号逻辑大师&#xff0c;AAAI 2024见证文本游戏新纪元 引言&#xff1a;文本游戏中的符号推理挑战 在人工智能的众多应用场景中&#xff0c;符号推理能力的重要性不言而喻。符号推理涉及对符号和逻辑规则的理解与应用&#xff0c;这对于处理现实世界中的符号性…...

服务限流实现方案

服务限流怎么做 限流算法 计数器 每个单位时间能通过的请求数固定&#xff0c;超过阈值直接拒绝。 通过维护一个单位时间内的计数器&#xff0c;每次请求计数器加1&#xff0c;当单位时间内计数器累加到大于设定的阈值&#xff0c;则之后的请求都被绝&#xff0c;直到单位时…...

【RTOS】快速体验FreeRTOS所有常用API(1)工程创建

目录 一、工程创建1.1 新建工程1.2 配置RCC1.3 配置SYS1.4 配置外设1&#xff09;配置 LED PC132&#xff09;配置 串口 UART13&#xff09;配置 OLED I2C1 1.5 配置FreeRTOS1.6 工程设置1.7 生成代码1.8 keil设置下载&复位1.9 添加用户代码 快速体验FreeRTOS所有常用API&a…...

Red Hat Enterprise Linux 8.9 安装图解

风险告知 本人及本篇博文不为任何人及任何行为的任何风险承担责任&#xff0c;图解仅供参考&#xff0c;请悉知&#xff01;本次安装图解是在一个全新的演示环境下进行的&#xff0c;演示环境中没有任何有价值的数据&#xff0c;但这并不代表摆在你面前的环境也是如此。生产环境…...

vcruntime140.dll文件修复的几种常见解决办法,vcruntime140.dll丢失的原因

vcruntime140.dll文件是Windows操作系统中的一个重要动态链接库&#xff08;DLL&#xff09;文件&#xff0c;它是Microsoft Visual C Redistributable的一部分。当出现vcruntime140.dll文件丢失的情况时&#xff0c;可能会导致一些程序无法正常运行或出现错误提示。为了电脑能…...

SpringCloud Alibaba 深入源码 - Nacos 分级存储模型、支撑百万服务注册压力、解决并发读写问题(CopyOnWrite)

目录 一、SpringCloudAlibaba 源码分析 1.1、SpringCloud & SpringCloudAlibaba 常用组件 1.2、Nacos的服务注册表结构是怎样的&#xff1f; 1.2.1、Nacos的分级存储模型&#xff08;理论层&#xff09; 1.2.2、Nacos 源码启动&#xff08;准备工作&#xff09; 1.2.…...

算法训练营Day45

#Java #动态规划 Feeling and experiences&#xff1a; 最长公共子序列&#xff1a;力扣题目链接 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新…...

【Redis漏洞利用总结】

前言 redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库&#xff0c;并提供多种语言的API。Redis默认使用 6379 端口。 一、redis未授权访问漏洞 0x01 漏洞描述 描述: Redis是一套开源的使用ANSI C编写、支持网络、可基于内存…...

SPI 动态服务发现机制

SPI&#xff08;Service Provier Interface&#xff09;是一种服务发现机制&#xff0c;通过ClassPath下的META—INF/services文件查找文件&#xff0c;自动加载文件中定义的类&#xff0c;再调用forName加载&#xff1b; spi可以很灵活的让接口和实现分离&#xff0c; 让API提…...

【C++进阶07】哈希表and哈希桶

一、哈希概念 顺序结构以及平衡树中 元素关键码与存储位置没有对应关系 因此查找一个元素 必须经过关键码的多次比较 顺序查找时间复杂度为O(N) 平衡树中为树的高度&#xff0c;即O( l o g 2 N log_2 N log2​N) 搜索效率 搜索过程中元素的比较次数 理想的搜索方法&#xff1a…...

Go 语言实现冒泡排序算法的简单示例

以下是使用 Go 语言实现冒泡排序算法的简单示例&#xff1a; package mainimport "fmt"func bubbleSort(arr []int) {n : len(arr)for i : 0; i < n-1; i {for j : 0; j < n-i-1; j {if arr[j] > arr[j1] {// 交换元素arr[j], arr[j1] arr[j1], arr[j]}}}…...

JAVA 学习 面试(五)IO篇

BIO是阻塞I/O&#xff0c;NIO是非阻塞I/O&#xff0c;AIO是异步I/O。BIO每个连接对应一个线程&#xff0c;NIO多个连接共享少量线程&#xff0c;AIO允许应用程序异步地处理多个操作。NIO&#xff0c;通过Selector&#xff0c;只需要一个线程便可以管理多个客户端连接&#xff0…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...