当前位置: 首页 > news >正文

代码随想录算法训练营day49 | 动态规划 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

day49

      • 123.买卖股票的最佳时机III
        • 1.确定dp数组以及下标的含义
        • 2.确定递推公式
        • 3.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组
      • 188.买卖股票的最佳时机IV
        • 1.确定dp数组以及下标的含义
        • 2.确定递推公式
        • 4.dp数组如何初始化
        • 4.确定遍历顺序
        • 5.举例推导dp数组

123.买卖股票的最佳时机III

题目链接
解题思路: 关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

动规五部曲

1.确定dp数组以及下标的含义

一天一共就有五个状态,

  • 没有操作 (其实我们也可以不设置这个状态)
  • 第一次持有股票
  • 第一次不持有股票
  • 第二次持有股票
  • 第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票
例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例
在这里插入图片描述
大家可以看到红色框为最后两次卖出的状态。

整体代码如下:

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};

188.买卖股票的最佳时机IV

题目链接
解题思路:
动规五部曲如下

1.确定dp数组以及下标的含义

在动态规划:123.买卖股票的最佳时机III 中,我是定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出

题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
所以二维dp数组的C++定义为:

vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));

2.确定递推公式

还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可以类比剩下的状态,代码如下:

for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

本题和动态规划:123.买卖股票的最佳时机III 最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。

4.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5],k=2为例。
在这里插入图片描述
最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

C++代码如下:

class Solution {
public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];}for (int i = 1;i < prices.size(); i++) {for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[prices.size() - 1][2 * k];}
};

相关文章:

代码随想录算法训练营day49 | 动态规划 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

day49123.买卖股票的最佳时机III1.确定dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组188.买卖股票的最佳时机IV1.确定dp数组以及下标的含义2.确定递推公式4.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组123.买卖股票的最佳时机III …...

【教学典型案例】14.课程推送页面整理-增加定时功能

目录一&#xff1a;背景介绍1、代码可读性差&#xff0c;结构混乱2、逻辑边界不清晰&#xff0c;封装意识缺乏![在这里插入图片描述](https://img-blog.csdnimg.cn/bbfc5f04902541db993944ced6b62793.png)3、展示效果不美观二&#xff1a;案例问题分析以及解决过程1、代码可读性…...

【算法基础】DFS BFS 进阶训练

DFS与BFS的基础篇详见:https://blog.csdn.net/m0_51339444/article/details/129301451?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22129301451%22%2C%22source%22%3A%22m0_51339444%22%7D 一、案例分析1 (树的重心 —— D…...

GO语言中的回调函数

0.前言 回调函数是一种在编程中常见的技术&#xff0c;通常在异步编程中使用。简单来说&#xff0c;回调函数是一个被传递给另一个函数的函数&#xff0c;它在该函数的某个时间点被调用&#xff0c;以完成某些特定的操作或任务。 在Go语言中&#xff0c;可以将函数直接作为参…...

28个案例问题分析---014课程推送页面逻辑整理--vue

一&#xff1a;背景介绍 项目开发过程中&#xff0c;前端出现以下几类问题&#xff1a; 代码结构混乱代码逻辑不清晰页面细节问题 二&#xff1a;问题分析 代码结构混乱问题 <template><top/><div style"position: absolute;top: 10px"><C…...

佛科院单片机原理2——80C51单片机结构

一、程序存储器的入口地址&#xff1a;程序入口地址&#xff1a;0000H外部中断0入口地址&#xff1a;0003H定时器0溢出中断入口地址&#xff1a;000BH外部中断1入口地址&#xff1a;00013H定时器1溢出中断入口地址&#xff1a;001BH串行口中断入口地址&#xff1a;0023H定时器2…...

数据结构与算法_动态顺序表

顺序表是线性表的一种。 线性表是n个具有相同特性的数据元素的有限序列。 逻辑上&#xff0c;它们是线性结构&#xff0c;是一条连续的直线&#xff1b;但是在物理上&#xff0c;它们通常以数组和链式结构存储。 常见的线性表有顺序表、栈、队列、字符串等。 顺序表是用一段…...

逃避浏览器JS检测打开开发者工具

20230304 - 0. 引言 看到一些视频网站之后&#xff0c;想把视频离线下载下来怎么办&#xff1f;直接的方法是通过开发者工具来查看网络流量&#xff0c;一般可以在传输的请求类型中搜索m3u8&#xff0c;然后找到这部分请求&#xff0c;然后利用某些播放器或者下载器直接下载。…...

ceph介绍、原理、架构、算法...个人学习记录

前言 之前公司安排出差支援非结构化项目&#xff0c;采用springcloud(redismysql数据冷热处理)s3escephkafka还涉及一些区块链技术等等…&#xff0c;在与大佬的沟通交流下对ceph产生了兴趣&#xff0c;私下学习记录一下&#xff1b;后续工作之余会采用上面相关技术栈手动实现不…...

Spring MVC源码解析——HandlerMapping(处理器映射器)

Sping MVC 源码解析——HandlerMapping处理器映射器1. 什么是HandlerMapping2. HandlerMapping2.1 HandlerMapping初始化2.2 getHandler解析3. getHandlerInternal()子类实现3.1 AbstractUrlHandlerMapping与AbstractHandlerMethodMapping的区别3.2 AbstractUrlHandlerMapping3…...

【Word/word2007】将标题第1章改成第一章

问题&#xff1a;设置多级列表没有其他格式选的解决办法和带来的插入图注解的问题&#xff0c;将标题第1章改成第一章的问题其他方案。 按照百度搜索的方法设置第一章&#xff0c;可以是没有相应的样式可以选。 那就换到编号选项 设置新的编号值 先选是 然就是变得很丑 这时打开…...

NLP预训练模型

Models Corpus RoBERTa: A Robustly Optimized BERT Pretraining Approach 与BERT主要区别在于&#xff1a; large mini-batches 保持总训练tokens数一致&#xff0c;使用更大的学习率、更大的batch size&#xff0c;adam β20.98\beta_20.98β2​0.98&#xff1b;dynamic ma…...

Typora上传文档图片链接失效的问题+PicGo布置图床在Github

文章目录typora图片链接失效原因PicGO开源图床布置先配置Github2.1先创建新仓库、用于存放图片2.2生成一个token&#xff0c;用picGo访问github3.下载picGo,并进行配置3.1 配置v4.1typora图片链接失效原因 因为你是保存在本地的&#xff0c;因此图片是不能访问&#xff0c;可以…...

win10安装oracle

文件放到最后。我的电脑是win11的&#xff0c;因为老师让写下安装笔记&#xff0c;在11上安装的时候没有截屏&#xff0c;所以在虚拟机上重新安装下吧。室友说要把文件夹放到c盘才能打开。我试了下&#xff0c;具体的是要把Oracle11g文件夹放到c盘根目录下。如果解压后不是这个…...

AQS为什么用双向链表?

首先&#xff0c;在AQS中&#xff0c;等待队列是通过Node类来表示的&#xff0c;每个Node节点包含了等待线程的信息以及等待状态。下面是Node类的部分源码&#xff1a;static final class Node {// 等待状态volatile int waitStatus;// 前驱节点volatile Node prev;// 后继节点…...

AtCoder Beginner Contest 292——A-E题讲解

蒟蒻来讲题&#xff0c;还望大家喜。若哪有问题&#xff0c;大家尽可提&#xff01; Hello, 大家好哇&#xff01;本初中生蒟蒻讲解一下AtCoder Beginner Contest 292这场比赛的A-E题&#xff01; A题 原题 Problem Statement You are given a string SSS consisting of lo…...

(蓝桥真题)最长不下降子序列(权值线段树)

样例输入&#xff1a; 5 1 1 4 2 8 5 样例输出&#xff1a; 4 分析&#xff1a;看到这种对其中连续k个数进行修改的我们就应该想到答案是由三部分组成&#xff0c;因为求的是最长不下降子序列&#xff0c;那么我们可以找到一个最合适的断点i&#xff0c;使得答案是由区间[1…...

数据类型及参数传递

1.数据类型 java中的基本数据类型: 数值型&#xff1a; 整数型&#xff1a;byte short long int 浮点型&#xff1a;float double 布尔型&#xff1a; boolean字符串: char java中的引用数据类型&#xff1a; 数组&#xff08;array&#xff09; 类&#xff08;class…...

永春堂1300系统开发|解析永春堂1300模式商城的五大奖项

电商平台竞争越来越激烈&#xff0c;各种营销方式也是层出不穷&#xff0c;其中永春堂1300营销模式&#xff0c;以其无泡沫和自驱动性强等特点风靡一时。在这套模式中&#xff0c;虽然单型价格差异较大&#xff0c;但各种奖励的设计&#xff0c;巧妙的兼顾了平台和所有会员的利…...

最近一年我都干了什么——反思!!

过去一年不管是学习方式还是心态上都和以往有了许多不同的地方&#xff0c;比较昏昏沉沉。最近慢慢找到状态了&#xff0c;就想赶紧记录下来。 学习 在学习新技术的过程中开始飘了&#xff0c;总感觉有了一些开发经验后就觉得什么都不用记&#xff0c;知道思路就行遇到了现场百…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...