当前位置: 首页 > news >正文

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据

目录

    • 碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本描述

1.Matlab实现LSTM长短期记忆神经网络多输入单输出未来预测,预测新数据(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出,预测新数据;
3.运行环境matlab2018及以上,excel数据,方便替换;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源出下载Matlab实现LSTM多输入单输出未来预测,预测新数据(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('sj.xlsx','训练数据');
%%  读取未来输入特征数据
kes = xlsread('sj.xlsx','需要预测的数据');
%%  划分训练集和测试集
temp = 1:11;P_train = res(temp(1: 8), 1: 3)';
T_train = res(temp(1: 8), 4)';
M = size(P_train, 2);P_test = res(temp(9: end), 1: 3)';
T_test = res(temp(9: end), 4)';
N = size(P_test, 2);
%%  数据转置
kes = kes';
K = size(kes, 2);
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据 目录 碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现LSTM长短期记忆神经网络多输入单输出未来…...

手拉手JavaFX UI控件与springboot3+FX桌面开发

目录 javaFx文本 javaFX颜色 字体 Label标签 Button按钮 //按钮单击事件 鼠标、键盘事件 //(鼠标)双击事件 //键盘事件 单选按钮RadioButton 快捷键、键盘事件 CheckBox复选框 ChoiceBox选择框 Text文本 TextField(输入框)、TextArea文本域 //过滤 (传入一个参数&a…...

02 分解质因子

一、数n的质因子分解 题目描述&#xff1a; 输入一个数n&#xff08;n<10^6&#xff09;,将数n分解质因数&#xff0c;并按照质因数从小到大的顺序输出每个质因数的底数和指数。 输入 5 输出 5 1 输入 10 输出 2 1 5 1 朴素解法&#xff1a; 首先求出1~n的所有质数…...

科技赋能智慧水利——山海鲸软件水利方案解析

作为山海鲸可视化软件的开发者&#xff0c;我们深感荣幸能为我国智慧水利建设提供强大助力。作为钻研数字孪生领域的开创者&#xff0c;我们希望不仅能为大家带来免费好用&#xff0c;人人都能用起来的数字孪生产品&#xff0c;还希望以其独特的技术优势和创新设计理念&#xf…...

C4.5决策树的基本建模流程

C4.5决策树的基本建模流程 作为ID3算法的升级版&#xff0c;C4.5在三个方面对ID3进行了优化&#xff1a; &#xff08;1&#xff09;它引入了信息值&#xff08;information value&#xff09;的概念来修正信息熵的计算结果&#xff0c;以抑制ID3更偏向于选择具有更多分类水平…...

本科毕业设计过程中应该锻炼的能力 (深度学习方向)

摘要: 本文以本科毕业设计做深度学习方向, 特别是全波形反演为例, 描述学生应在此过程中锻炼的能力. 搭建环境的能力. 包括 Python, PyTorch 等环境的安装.采集数据的能力. 包括 OpenFWI 等数据集.查阅资料的能力. 包括自己主要参考的文献, 以及其它相关文献 (不少于 20 篇). …...

深度学习——pycharm远程连接

目录 远程环境配置本地环境配置&#xff08;注意看假设&#xff01;&#xff01;!这是很多博客里没写的&#xff09;步骤1步骤2步骤2.1 配置Connection步骤2.2 配置Mappings 步骤3 配置本地项目的远程解释器技巧1 pycharm中远程终端连接技巧2 远程目录技巧3 上传代码文件技巧4 …...

信号量机制解决经典同步互斥问题

生产者 / 消费者问题、读者 / 写者问题和哲学家问题是操作系统的三大经典同步互斥问题。本文将介绍这三个问题的基本特点以及如何用信号量机制进行解决。 在分析这三个问题之前&#xff0c;我们首先需要了解用信号量机制解决同步互斥问题的一般规律&#xff1a; 实现同步与互斥…...

java基础09-==和equals()的区别,附代码举例

和equals()的区别 在Java中&#xff0c;和equals()是两个不同的运算符&#xff0c;它们在比较对象时有着本质的区别。 运算符: 用于比较两个基本数据类型&#xff08;如int、char等&#xff09;或两个对象的引用。 当用于比较基本数据类型时&#xff0c;它会比较它们的值。 当…...

qml与C++的交互

qml端使用C对象类型、qml端调用C函数/c端调用qml端函数、qml端发信号-连接C端槽函数、C端发信号-连接qml端函数等。 代码资源下载&#xff1a; https://download.csdn.net/download/TianYanRen111/88779433 若无法下载&#xff0c;直接拷贝以下代码测试即可。 main.cpp #incl…...

LabVIEW电路板插件焊点自动检测系统

LabVIEW电路板插件焊点自动检测系统 介绍了电路板插件焊点的自动检测装置设计。项目的核心是使用LabVIEW软件&#xff0c;开发出一个能够自动检测电路板上桥接、虚焊、漏焊和多锡等焊点缺陷的系统。 系统包括成像单元、机械传动单元和软件处理单元。首先&#xff0c;利用工业相…...

第十一站:多态练习ODU

实现动态切换 ODU.h #pragma once #include <iostream> using namespace std; #define ODU_TYPE_311_FLAG "311" #define ODU_TYPE_335_FLAG "335" enum class ODU_TYPE {ODU_TYPE_311,ODU_TYPE_335,ODU_TYPE_UNKNOW };class ODU{ public:ODU();//发…...

【深度学习】详解利用Matlab和Python中 LSTM 网络实现序列分类

🔗 运行环境:Matlab、Python 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 🔐#### 防伪水印——左手の明天 ####🔐 💗 大家好🤗🤗🤗,我是左手の明天!好久不见💗 💗今天分享Matlab深度学习—— LSTM 网络实现序列分...

Unity 工厂方法模式(实例详解)

文章目录 在Unity中&#xff0c;工厂方法模式是一种创建对象的常用设计模式&#xff0c;它提供了一个接口用于创建对象&#xff0c;而具体的产品类是由子类决定的。这样可以将对象的创建过程与使用过程解耦&#xff0c;使得代码更加灵活和可扩展。 工厂模式的主要优点如下&…...

2024年美赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

一键完成,批量转换HTML为PDF格式的方法,提升办公效率

在当今数字化的时代&#xff0c;HTML和PDF已经成为两种最常用的文件格式。HTML用于网页内容的展示&#xff0c;而PDF则以其高度的可读性和不依赖于平台的特性&#xff0c;成为文档分享和传播的首选格式。然而&#xff0c;在办公环境中&#xff0c;我们经常需要在这两种格式之间…...

【重点问题】攻击面发现及管理

Q1&#xff1a;在使用长亭云图极速版时&#xff0c;是否需要增设白名单扫描节点&#xff1f; 长亭云图极速版高级网络安全产品基于一种理念&#xff0c;即攻击面发现是一个不断变换且需要持续对抗的过程。在理想的情况下&#xff0c;用户应当在所有预置防护设施发挥作用的环境…...

UE4外包团队:国外使用UE4虚幻引擎制作的十个知名游戏

​ 1.俄罗斯方块效果&#xff08;任天堂 Switch、PlayStation 4、PC、Xbox&#xff09; 2.耀西的手工世界&#xff08;任天堂 Switch&#xff09; 3. Final Fantasy 7 Remake Intergrade (PlayStation, PC) 4.《堡垒之夜》&#xff08;PC、Nintendo Switch、PlayStation、Xb…...

解决springboot+mybatisplus返回时间格式带T

原因&#xff1a;我service实现类的代码是 Overridepublic Map<String, Object> queryDictPage(Map<String, Object> queryMap) {Map<String,Object> map new HashMap<>();QueryWrapper<Dict> wrapper new QueryWrapper<>(); // …...

纯命令行在Ubuntu中安装qemu的ubuntu虚拟机,成功备忘

信息总体还算完整&#xff0c;有个别软件更新了名字&#xff0c;所以在这备忘一下 1. 验证kvm是否支持 ________________________________________________________________ $ grep vmx /proc/cpuinfo __________________________________________________________________…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...