【数学建模】插值与拟合
文章目录
- 插值
- 插值方法
- 用Python解决插值问题
- 拟合
- 最小二乘拟合
- 数据拟合的Python实现
适用情况
处理由试验、测量得到的大量数据或一些过于复杂而不便于计算的函数表达式时,构造一个简单函数作为要考察数据或复杂函数的近似
定义
给定一组数据,需要确定满足特定要求的曲线(或曲面)
插值:如果所求曲线通过所给定有限个数据点
拟合:要求所求曲线反映对象整体的变化态势,得到简单实用的近似函数
插值
在一系列数据点对中,一些数据点的函数值缺失,因而希望通过已有数据点得到函数的近似表达式从而近似出确实数据点的函数值
从性质优良、便于计算的函数类{P(x)}中选择一个使得 P ( x i ) = y i P(x_i) =y_i P(xi)=yi成立的P(x)作为f(x)的近似
x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn成为插值节点
{ P ( x ) } \{P(x)\} {P(x)}称为插值函数类
P ( x i ) = y i ( i = 0 , 1 , . . . , n ) P(x_i) =y_i(i=0, 1, ..., n) P(xi)=yi(i=0,1,...,n)称为插值条件
得到的 P ( x ) P(x) P(x)称为插值函数
f ( x ) f(x) f(x)称为被插值函数
一维插值方法:一维Lagrange插值、分段线性插值、分段二次插值、牛顿插值和样条插值
二维插值方法:二维样条插值
插值方法
Lagrange插值
P ( x ) = ∑ i = 0 n l i ( x ) y i P(x)=\sum^n_{i=0}l_i(x)y_i P(x)=i=0∑nli(x)yi
其中 l i ( x ) l_i(x) li(x)称为以 x 0 , x 1 , . . . , x n x_0, x_1, ..., x_n x0,x1,...,xn为节点的Lagrange插值基函数
l i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j l_i(x) = \prod^n_{j=0, j\neq i} \frac{x-x_j}{x_i-x_j} li(x)=j=0,j=i∏nxi−xjx−xj
代码实现
def h(x,y,a):s = 0.0for i in range(len(y)):t = y[i]for j in range(len(y)):if i != j:t *= (a-x[j])(x[i]-x[j])s += treturn s
分段线性插值
用折线代替曲线 y = f ( x ) y = f(x) y=f(x),其中 P ( x ) P(x) P(x)为
P ( x ) = x − x i x i + 1 − x i y i + 1 + x − x i + 1 x i − x i + 1 y i P(x) = \frac{x-x_i}{x_{i+1}-x_i}y_{i+1} + \frac{x-x_{i+1}}{x_i-x_{i+1}}y_i P(x)=xi+1−xix−xiyi+1+xi−xi+1x−xi+1yi
其中 x ∈ [ x i , x i + 1 ] , i = 0 , 1 , . . . , n − 1 x \in [x_i, x_{i+1}], i=0,1,..., n-1 x∈[xi,xi+1],i=0,1,...,n−1
分段二次插值
P ( x ) P(x) P(x)为一二次多项式,即适用分段抛物线代替 y = f ( x ) y=f(x) y=f(x)
牛顿插值
差分定义:函数 f ( x ) f(x) f(x),等距节点 x i = x 0 + i h ( i = 0 , 1 , . . . , n ) x_i=x_0+ih(i=0, 1, ..., n) xi=x0+ih(i=0,1,...,n),一阶前向差分 Δ f i = f i + 1 − f i \Delta f_i = f_{i+1}-f_i Δfi=fi+1−fi, 高阶差分为差分的差分
- Δ 0 f ( x ) = f ( x ) \Delta^0 f(x) = f(x) Δ0f(x)=f(x)
- Δ m f ( x ) = Δ m − 1 f ( x + h ) − Δ m − 1 f ( x ) \Delta^m f(x) = \Delta^{m-1}f(x+h) - \Delta^{m-1}f(x) Δmf(x)=Δm−1f(x+h)−Δm−1f(x)
递归函数计算差分
def diff_forward(f, k, h, x):if k<=0: return f(x)else: return diff_forward(f, k-1, h, x+h) - diff_forward(f, k-1, h, x)
差商定义:函数 f ( x ) f(x) f(x),相异节点 x 0 < x 1 < . . . < x n x_0 < x_1<... < x_n x0<x1<...<xn
函数 f ( x ) f(x) f(x)关于节点 x i x_i xi, x j x_j xj的一阶差商 f [ x i , x j ] f[x_i, x_j] f[xi,xj]有
f [ x i , x j ] = f ( x i ) − f ( x j ) x i − x j f[x_i, x_j] = \frac{f(x_i)-f(x_j)}{x_i-x_j} f[xi,xj]=xi−xjf(xi)−f(xj)
f ( x ) f(x) f(x)关于点 x i x_i xi, x j x_j xj, x k x_k xk的二阶差商有
f [ x i , x j , x k ] = f [ x i , x j ] − f [ x j , x k ] x i − x k f[x_i, x_j, x_k]= \frac{f[x_i, x_j]-f[x_j, x_k]}{x_i-x_k} f[xi,xj,xk]=xi−xkf[xi,xj]−f[xj,xk]
f ( x ) f(x) f(x)关于 x 0 , x 1 , . . . , x k x_0, x_1, ..., x_k x0,x1,...,xk的 k k k阶差商为
f [ x 0 , x 1 , . . . , x k ] = f [ x 0 , x 1 , . . . , x k − 1 ] − f [ x 1 , x 2 , . . . , x k ] x 0 − x k f[x_0, x_1, ..., x_k] = \frac{f[x_0, x_1, ..., x_{k-1}]-f[x_1, x_2, ..., x_k]}{x_0-x_k} f[x0,x1,...,xk]=x0−xkf[x0,x1,...,xk−1]−f[x1,x2,...,xk]
代码示例:计算 k + 1 k+1 k+1个点对数据的 k k k阶差商
def diff_quo(xi=[], fi=[]):if len(xi)>2 and len(fi)>2:return (diff_quo(xi[:len(xi)-1],fi[:len(fi)-1])-diff_quo(xi[1:len(xi)],fi[1:len(fi)])) / float(xi[0]-xi[-1]) return (fi[0]- fi[1])/float(xi[0]-xi[1])
Newton插值公式
一次Newton插值多项式: N 1 ( x ) = f ( x 0 ) + ( x − x 0 ) f [ x 0 , x 1 ] N_1(x)=f(x_0)+(x-x_0)f[x_0, x_1] N1(x)=f(x0)+(x−x0)f[x0,x1]
再根据各阶差商的定义,可以得到 N n ( x ) N_n(x) Nn(x)即 f ( x ) f(x) f(x)的 n n n次插值多项式
样条插值
适用于对插值函数的光滑性有较高要求的问题
样条函数:具有一定光滑性的分段多项式
给定 [ a , b ] [a,b] [a,b]的一个分划, Δ : a = x 0 < x 1 < . . . < x n = b \Delta: a=x_0 < x_1 < ... < x_n=b Δ:a=x0<x1<...<xn=b
若 S ( x ) S(x) S(x)在各个小区间 [ x i , x i + 1 ] ( i = 0 , 1 , . . . , n − 1 ) [x_i, x_{i+1}](i=0, 1, ..., n-1) [xi,xi+1](i=0,1,...,n−1)上为 m m m次多项式,且有 m − 1 m-1 m−1阶连续导数,称 S ( x ) S(x) S(x)为关于分划 Δ \Delta Δ的 m m m次样条函数,折线属于一次样条曲线
二维数据的双三次样条插值
考虑二维数据的插值时,需要考虑到插值区域是否规则,给定数据是有规律分布的还是散乱、随机分布的
当二维数据在规则区域上有规律分布时,可以考虑用双三次样条插值,即求解一个 S ( x ) S(x) S(x)满足对 x x x和 y y y都是三次的多项式
用Python解决插值问题
scipy.interpolate
module有一维插值函数interp1d
、二维插值函数interp2d
和多维插值函数interpn
一维插值
interp1d(x, y, kind='linear')
说明:kind
参数取值为字符串,指明插值方法,取值包括linear
线性插值、zero
0阶样条插值、slinear
1阶样条插值、quadratic
2阶样条插值、cubic
3阶样条插值
代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
x=np.arange(0,25,2)
y=np.array([12, 9, 9, 10, 18, 24, 28, 27, 25, 20, 18, 15, 13])
xnew=np.linspace(0, 24, 500) #插值点
f1=interp1d(x, y);
y1=f1(xnew);
f2=interp1d(x, y,'cubic');
y2=f2(xnew)
plt.rc('font',size=16);
plt.rc('font',family='SimHei')
plt.subplot(121)
plt.plot(xnew, y1)
plt.xlabel("(A)分段线性插值")
plt.subplot(122)
plt.plot(xnew, y2)
plt.xlabel("(B)三次样条插值")
plt.savefig("figure7_4.png", dpi=500)
plt.show()
二维网格节点插值
思路:原始数据为100x100网格节点的数据,为提高精度,适用双三次样条插值,得到该区域上10x10网格节点的数据。把 0 ≤ x ≤ 1400 ∧ 0 ≤ y ≤ 1200 0 \leq x \leq 1400 \land 0 \leq y \leq 1200 0≤x≤1400∧0≤y≤1200 数据分为140x120个小矩形计算对应曲面面积,每个矩形分为两个三角形,再利用海伦公式求解
代码:
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import norm
from scipy.interpolate import interp2d
z=np.loadtxt("Pdata7_5.txt") #加载高程数据
x=np.arange(0,1500,100)
y=np.arange(1200,-100,-100)
f=interp2d(x, y, z, 'cubic')
xn=np.linspace(0,1400,141)
yn=np.linspace(0,1200,121)
zn=f(xn, yn)
m=len(xn); n=len(yn); s=0;
for i in np.arange(m-1):for j in np.arange(n-1):p1=np.array([xn[i],yn[j],zn[j,i]])p2=np.array([xn[i+1],yn[j],zn[j,i+1]])p3=np.array([xn[i+1],yn[j+1],zn[j+1,i+1]])p4=np.array([xn[i],yn[j+1],zn[j+1,i]])p12=norm(p1-p2); p23=norm(p3-p2); p13=norm(p3-p1);p14=norm(p4-p1); p34=norm(p4-p3);L1=(p12+p23+p13)/2;s1=np.sqrt(L1*(L1-p12)*(L1-p23)*(L1-p13));L2=(p13+p14+p34)/2; s2=np.sqrt(L2*(L2-p13)*(L2-p14)*(L2-p34));s=s+s1+s2;
print("区域的面积为:", s)
plt.rc('font',size=16); plt.rc('text',usetex=True)
plt.subplot(121); contr=plt.contour(xn,yn,zn); plt.clabel(contr)
plt.xlabel('$x$'); plt.ylabel('$y$',rotation=90)
ax=plt.subplot(122,projection='3d');
X,Y=np.meshgrid(xn,yn)
ax.plot_surface(X, Y, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.savefig('figure7_5.png',dpi=500); plt.show()
二维乱点插值
代码:
from mpl_toolkits import mplot3d
import matplotlib.pyplot as plt
import numpy as np
from scipy.interpolate import griddata
x=np.array([129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5])
y=np.array([7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5])
z=-np.array([4,8,6,8,6,8,8,9,9,8,8,9,4,9])
xy=np.vstack([x,y]).T
xn=np.linspace(x.min(), x.max(), 100)
yn=np.linspace(y.min(), y.max(), 100)
xng, yng = np.meshgrid(xn,yn) #构造网格节点
zn=griddata(xy, z, (xng, yng), method='nearest') #最近邻点插值
plt.rc('font',size=16); plt.rc('text',usetex=True)
ax=plt.subplot(121,projection='3d');
ax.plot_surface(xng, yng, zn,cmap='viridis')
ax.set_xlabel('$x$'); ax.set_ylabel('$y$'); ax.set_zlabel('$z$')
plt.subplot(122); c=plt.contour(xn,yn,zn,8); plt.clabel(c)
plt.savefig('figure7_6.png',dpi=500); plt.show()
拟合
最小二乘拟合
解决什么问题?
已知一组二维数据,即平面上 n n n个点 ( x i , y i ) ( i = 1 , 2 , . . . , n ) (x_i, y_i)(i=1, 2, ..., n) (xi,yi)(i=1,2,...,n), x i x_i xi互不相同,求函数 f ( x ) f(x) f(x)使得 f ( x ) f(x) f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好
残差: δ i = f ( x i ) − y i , i = 1 , 2 , . . . , n \delta_i=f(x_i)-y_i, i=1,2,...,n δi=f(xi)−yi,i=1,2,...,n
最小二乘法使用的判定准则为残差的平和和最小,即
a r g m i n J = ∑ i = 1 n ( f ( x i ) − y i ) 2 argmin \quad J=\sum^n_{i=1}(f(x_i)-y_i)^2 argminJ=i=1∑n(f(xi)−yi)2
最终得到拟合函数 f ( x ) = f ( x , a 1 , a 2 , . . . , a n ) f(x) = f(x, a_1, a_2, ..., a_n) f(x)=f(x,a1,a2,...,an)
根据参数 a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an线性与否,最小二乘法分为线性最小二乘和非线性最小二乘
线性最小二乘法
给定线性无关的函数系 { ϕ k ( x ) ∣ k = 1 , 2 , . . . , m } \{\phi_k(x)|k=1,2,...,m\} {ϕk(x)∣k=1,2,...,m}
若有拟合函数 f ( x ) = ∑ k = 1 m a k ϕ k ( x ) f(x) = \sum^m_{k=1}a_k \phi_k(x) f(x)=∑k=1makϕk(x),例如 f ( x ) = a m x m − 1 + a m − 1 x m − 2 + . . . + a 2 x + a 1 f(x)=a_mx^{m-1}+a_{m-1}x^{m-2}+...+a_2x+a_1 f(x)=amxm−1+am−1xm−2+...+a2x+a1 或 f ( x ) = ∑ k = 1 m a k c o s ( k x ) f(x) = \sum^m_{k=1}a_k cos(kx) f(x)=∑k=1makcos(kx)
称 f ( x ) = f ( x , a 1 , a 2 , . . . , a m ) f(x)=f(x,a_1, a_2, ..., a_m) f(x)=f(x,a1,a2,...,am)为关于参数 a 1 , a 2 , . . . , a m a_1,a_2,..., a_m a1,a2,...,am的线性函数
将 f ( x ) f(x) f(x)带入 J J J的计算,根据
∂ J ∂ a k = 0 , k = 1 , 2 , ⋯ , m \frac{\partial J}{\partial a_k}=0,\quad k=1,2,\cdots,m ∂ak∂J=0,k=1,2,⋯,m
即:
∑ i = 1 n [ ( f ( x i ) − y i ) φ k ( x i ) ] = 0 , k = 1 , 2 , ⋯ , m \sum_{i=1}^{n}\left[\left(f\left(x_{i}\right)-y_{i}\right) \varphi_{k}\left(x_{i}\right)\right]=0, \quad k=1,2, \cdots, m i=1∑n[(f(xi)−yi)φk(xi)]=0,k=1,2,⋯,m
得到:
形成一个关于 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am的线性方程组,记号说明如下:
则正规方程组改写为
R T R A = R T Y R^TRA=R^TY RTRA=RTY
当矩阵 R R R列满秩时, R T R R^TR RTR可逆,此时正规方程组有唯一解,即
A = ( R T R ) − 1 R T Y A=(R^TR)^{-1}R^TY A=(RTR)−1RTY
非线性最小二乘拟合
当拟合函数不能以 ϕ k ( x ) \phi_k(x) ϕk(x)线性组合的形式构成时,例如下列形式:
使用同样的“最小化偏差”方法求解参数
拟合函数的选择
先做出数据的散点图,从直观上判断应选用什么样的拟合函数
举个例子
若数据分布接近直线,使用线性函数 f ( x ) = a 1 x + a 2 f(x)=a_1x+a_2 f(x)=a1x+a2
若数据分布接近抛物线,使用二次多项式 f ( x ) = a 1 x 2 + a 2 x + a 3 f(x)=a_1x^2+a_2x+a_3 f(x)=a1x2+a2x+a3
若数据分布是开始上升块随后逐渐变缓,使用双曲线型函数或指数型函数,即
若数据分布是开始下降较快随后逐渐变缓,使用
数据拟合的Python实现
利用NumPy
库中的多项式拟合函数polyfit
或scipy.optimize
模块中的curve_fit
函数
polyfit的用法
代码展示:
from numpy import polyfit, polyval, array, arange
from matplotlib.pyplot import plot,show,rc
x0=arange(0, 1.1, 0.1)
y0=array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
p=polyfit(x0, y0, 2) #拟合二次多项式
print("拟合二次多项式的从高次幂到低次幂系数分别为:",p)
yhat=polyval(p,[0.25, 0.35]); print("预测值分别为:", yhat)
rc('font',size=16)
plot(x0, y0, '*', x0, polyval(p, x0), '-'); show()
curve_fit的用法
调用格式
popt, pcov = curve_fit(func, xdata, ydata)
参数说明:func为拟合的函数,xdata是自变量的观测值,ydata是函数的观测值,返回值popt是拟合的参数,pcov是参数的协方差矩阵
代码展示:
import numpy as np
from scipy.optimize import curve_fit
y=lambda x, a, b, c: a*x**2+b*x+c
x0=np.arange(0, 1.1, 0.1)
y0=np.array([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
popt, pcov=curve_fit(y, x0, y0)
print("拟合的参数值为:", popt)
print("预测值分别为:", y(np.array([0.25, 0.35]), *popt))
实例练习
代码:
import numpy as np
from scipy.optimize import curve_fit
x0=np.array([6, 2, 6, 7, 4, 2, 5, 9])
y0=np.array([4, 9, 5, 3, 8, 5, 8, 2])
z0=np.array([5, 2, 1, 9, 7, 4, 3, 3])
xy0=np.vstack((x0, y0))
def Pfun(t, a, b, c):return a*np.exp(b*t[0])+c*t[1]**2
popt, pcov=curve_fit(Pfun, xy0, z0)
print("a,b,c的拟合值为:", popt)
代码:
from mpl_toolkits import mplot3d
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
m=200; n=300
x=np.linspace(-6, 6, m); y=np.linspace(-8, 8, n);
x2, y2 = np.meshgrid(x, y)
x3=np.reshape(x2,(1,-1)); y3=np.reshape(y2, (1,-1))
xy=np.vstack((x3,y3))
def Pfun(t, m1, m2, s):return np.exp(-((t[0]-m1)**2+(t[1]-m2)**2)/(2*s**2))
z=Pfun(xy, 1, 2, 3); zr=z+0.2*np.random.normal(size=z.shape) #噪声数据
popt, pcov=curve_fit(Pfun, xy, zr) #拟合参数
print("三个参数的拟合值分别为:",popt)
zn=Pfun(xy, *popt) #计算拟合函数的值
zn2=np.reshape(zn, x2.shape)
plt.rc('font',size=16)
ax=plt.axes(projection='3d') #创建一个三维坐标轴对象
ax.plot_surface(x2, y2, zn2,cmap='gist_rainbow')
plt.savefig("figure7_10.png", dpi=500); plt.show()
相关文章:

【数学建模】插值与拟合
文章目录 插值插值方法用Python解决插值问题 拟合最小二乘拟合数据拟合的Python实现 适用情况 处理由试验、测量得到的大量数据或一些过于复杂而不便于计算的函数表达式时,构造一个简单函数作为要考察数据或复杂函数的近似 定义 给定一组数据,需要确定满…...

全卷积网络:革新图像分析
一、介绍 全卷积网络(FCN)的出现标志着计算机视觉领域的一个重要里程碑,特别是在涉及图像分析的任务中。本文深入探讨了 FCN 的概念、它们的架构、它们与传统卷积神经网络 (CNN) 的区别以及它们在各个领域的应用。 就像…...
ubuntu20.04 格式化 硬盘 扩展硬盘GParted
如何在 Ubuntu 22.04 LTS 上安装分区编辑器 GParted?_gparted安装-CSDN博客 sudo apt install gparted 步骤5:启动GParted 安装完成后,您可以在应用程序菜单中找到GParted。点击它以启动分区编辑器。 通过以上步骤,您可以在Ubun…...

docker的资源限制(cgroup)
前瞻 Docker 通过 Cgroup 来控制容器使用的资源配额,包括 CPU、内存、磁盘三大方面, 基本覆盖了常见的资源配额和使用量控制。 Cgroup 是 ControlGroups 的缩写,是 Linux 内核提供的一种可以限制、记录、隔离进程组所使用的物理资源(如 CPU、…...
ChatGPT与文心一言:应用示例与体验比较
ChatGPT 和文心一言哪个更好用? 为了更好地感受ChatGPT和文心一言这两款AI助手如何在实际运用中竞相辉映,我将提供一些典型的应用示例。这些示例都取自真实的用户体验,以帮助解释这两种工具如何让日常生活或工作变得更加轻松。 ChatGPT Ch…...

紫光展锐T760_芯片性能介绍_展锐T760安卓核心板定制
展锐T760核心板是一款基于国产5G芯片的智能模块,采用紫光展锐T760制程工艺为台积电6nm工艺,支持工艺具有出色的能效表现。其采用主流的44架构的八核设计,包括4颗2.2GHz A76核心和4颗A55核心设计,内存单元板载可达8GB Ram256GB ROM…...
从动力系统研究看当今数学界
6.3... Milnor’s definition of “attractors” which has been criticized above by us). The work of [KSS2] of asserting the existence of “nice open set” of Ω(p.148) would be likely not verified, for example we think the first sentence “… since f is nont…...

【征服redis15】分布式锁的功能与整体设计方案
目录 1. 分布式锁的概念 2.基于数据库做分布式锁 2.1 基于表主键唯一做分布式锁 2.2 基于表字段版本号做分布式锁 2.3 基于数据库排他锁做分布式锁 3.使用Redis做分布式锁 3.1 redis实现分布式锁的基本原理 3.2 问题一:增加超时机制,防止长期持有…...
MATLAB中实现机械臂逆运动学求解的方法之一是使用阻尼最小二乘法
MATLAB中实现机械臂逆运动学求解的方法之一是使用阻尼最小二乘法。阻尼最小二乘法通常用于处理数值求解问题中的不稳定性和噪声。以下是一个简单的MATLAB代码示例,演示了机械臂逆运动学的阻尼最小二乘法求解: % 机械臂参数 L1 1; % 机械臂长度 L2 1;…...

2024.1.24 GNSS 学习笔记
1.伪距观测值公式 2.载波相位观测值公式 3.单点定位技术(Single Point Positionin, SPP) 仅使用伪距观测值,不使用其他的辅助信息获得ECEF框架下绝对定位技术。 使用广播星历的轨钟进行定位,考虑到轨钟的米级精度,所以对于<1米的误差&…...

2024-01-22(MongoDB)
1.Mongodb使用的业务场景: 传统的关系型数据库/mysql在“三高”需求以及应对web2.0的网站需求面前,有点力不从心,什么是“三高”需求: a. 对数据库高并发的读写需求 b. 对海量数据的高效率存储和访问需求 c. 对数据库的高可扩…...

无人机航迹规划(六):七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)
一、七种算法(DBO、LO、SWO、COA、LSO、KOA、GRO)简介 1、蜣螂优化算法DBO 蜣螂优化算法(Dung beetle optimizer,DBO)由Jiankai Xue和Bo Shen于2022年提出,该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁…...

《WebKit 技术内幕》学习之十二(2):安全机制
2 沙箱模型 2.1 原理 一般而言,对于网络上的网页中的JavaScript代码和插件是不受信的(除非是经过认证的网站),特别是一些故意设计侵入浏览器运行的主机代码更是非常危险,通过一些手段或者浏览器中的漏洞,…...

算法优化:LeetCode第122场双周赛解题策略与技巧
接下来会以刷常规题为主 ,周赛的难题想要独立做出来还是有一定难度的,需要消耗大量时间 比赛地址 3011. 判断一个数组是否可以变为有序 public class Solution {public int minimumCost(int[] nums) {if (nums.length < 3) {// 数组长度小于3时&a…...

IDEA导出jar
1、选择导出方式 2、选择Main Class 3、构建jar...

Win10/11中VMware Workstation设置网络桥接模式
文章目录 一、添加VMware Bridge Protocol服务二、配置桥接参数1.启用系统Device Install Service服务2.配置VMware 需要确认物理网卡是否有添加VMware Bridge Protocol服务 添加VMware Bridge Protocol服务 提示:以下是本篇文章正文内容,下面案例可供参…...
html Canvas粒子文字特效
代码有点长,下面是代码: <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>HTML5 Canvas粒子效果文字动画特效DEMO演示</title><link rel"stylesheet" href"css/normalize.c…...
@JsonFormat失效,被jackson自定义配置覆盖
jackson配置类 我的jackson配置类如下,其中serializerByType(LocalDateTime.class, new LocalDateTimeSerializer()) 覆盖了JsonFormat注解 Configuration public class JacksonConfiguration {public static final DateTimeFormatter optionalDateTimePattern (n…...

SaaS系统如何助力企业数字化转型
随着科技的快速发展,数字化转型已经成为企业适应市场变化、提高竞争力的必要手段。在这个过程中,SaaS(软件即服务)系统以其独特的优势,正在成为越来越多企业的首选。乔拓云SaaS系统作为这一领域的佼佼者,更…...

nginx配置内网代理,前端+后端分开配置
安装好后nginx,进入配置文件 我这块安装在了home里面,各位根据自身情况选择 打开nginx.conf文件 在底部查看是否包含这段信息:含义是配置文件包含该路径下的配置文件 include /home/nginx/conf/conf.d/*.conf; # 该路径根据自己的安装位置自行修改 配置文件 进入conf.d文…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...