人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)
人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)
- FaceNet的简介
- Facenet的实现思路
- 训练部分
FaceNet的简介
Facenet的实现思路
import torch.nn as nndef conv_bn(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.ReLU6())def conv_dw(inp, oup, stride = 1):return nn.Sequential(nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),nn.BatchNorm2d(inp),nn.ReLU6(),nn.Conv2d(inp, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),nn.ReLU6(),)class MobileNetV1(nn.Module):def __init__(self):super(MobileNetV1, self).__init__()self.stage1 = nn.Sequential(# 160,160,3 -> 80,80,32conv_bn(3, 32, 2), # 80,80,32 -> 80,80,64conv_dw(32, 64, 1), # 80,80,64 -> 40,40,128conv_dw(64, 128, 2),conv_dw(128, 128, 1),# 40,40,128 -> 20,20,256conv_dw(128, 256, 2),conv_dw(256, 256, 1),)self.stage2 = nn.Sequential(# 20,20,256 -> 10,10,512conv_dw(256, 512, 2),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),conv_dw(512, 512, 1),)self.stage3 = nn.Sequential(# 10,10,512 -> 5,5,1024conv_dw(512, 1024, 2),conv_dw(1024, 1024, 1),)self.avg = nn.AdaptiveAvgPool2d((1,1))self.fc = nn.Linear(1024, 1000)def forward(self, x):x = self.stage1(x)x = self.stage2(x)x = self.stage3(x)x = self.avg(x)# x = self.model(x)x = x.view(-1, 1024)x = self.fc(x)return x
class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"): super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x
在pytorch代码中,只需要一行就可以实现l2标准化的层。
class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"): super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x
class Facenet(nn.Module):def __init__(self, backbone="mobilenet", dropout_keep_prob=0.5, embedding_size=128, num_classes=None, mode="train"):super(Facenet, self).__init__()if backbone == "mobilenet":self.backbone = mobilenet()flat_shape = 1024elif backbone == "inception_resnetv1":self.backbone = inception_resnet()flat_shape = 1792else:raise ValueError('Unsupported backbone - `{}`, Use mobilenet, inception_resnetv1.'.format(backbone))self.avg = nn.AdaptiveAvgPool2d((1,1))self.Dropout = nn.Dropout(1 - dropout_keep_prob)self.Bottleneck = nn.Linear(flat_shape, embedding_size,bias=False)self.last_bn = nn.BatchNorm1d(embedding_size, eps=0.001, momentum=0.1, affine=True)if mode == "train":self.classifier = nn.Linear(embedding_size, num_classes)def forward(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)x = self.last_bn(x)x = F.normalize(x, p=2, dim=1)return xdef forward_feature(self, x):x = self.backbone(x)x = self.avg(x)x = x.view(x.size(0), -1)x = self.Dropout(x)x = self.Bottleneck(x)before_normalize = self.last_bn(x)x = F.normalize(before_normalize, p=2, dim=1)return before_normalize, xdef forward_classifier(self, x):x = self.classifier(x)return x
训练部分
相关文章:

人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示)
人脸识别 FaceNet人脸识别(一种人脸识别与聚类的统一嵌入表示) FaceNet的简介Facenet的实现思路训练部分 FaceNet的简介 Facenet的实现思路 import torch.nn as nndef conv_bn(inp, oup, stride 1):return nn.Sequential(nn.Conv2d(inp, oup, 3, stride…...

Python tkinter (6) Listbox
Python的标准Tk GUI工具包的接口 tkinter系列文章 python tkinter窗口简单实现 Python tkinter (1) —— Label标签 Python tkinter (2) —— Button标签 Python tkinter (3) —— Entry标签 Python tkinter (4) —— Text控件 GUI 目录 Listbox 创建listbox 添加元素…...

优雅的python(二)
🌈个人主页:小田爱学编程 🔥 系列专栏:c语言从基础到进阶 🏆🏆关注博主,随时获取更多关于c语言的优质内容!🏆🏆 😀欢迎来到小田代码世界~ &#x…...

Git安装详细步骤
目录 1、双击安装包,点击NEXT编辑 2、更改安装路径,点击NEXT 3、选择安装组件 4、选择开始菜单页 5、选择Git文件默认的编辑器 6、调整PATH环境 7、选择HTTPS后端传输 8、配置行尾符号转换 9、配置终端模拟器与Git Bash一起使用 10、配置额外…...

首发:2024全球DAO组织发展研究
作者,张群(专注DAO及区块链应用研究,赛联区块链教育首席讲师,工信部赛迪特邀资深专家,CSDN认证业界专家,微软认证专家,多家企业区块链产品顾问) DAO(去中心化自治组织&am…...

【大数据】详解 Flink 中的 WaterMark
详解 Flink 中的 WaterMark 1.基础概念1.1 流处理1.2 乱序1.3 窗口及其生命周期1.4 Keyed vs Non-Keyed1.5 Flink 中的时间 2.Watermark2.1 案例一2.2 案例二2.3 如何设置最大乱序时间2.4 延迟数据重定向 3.在 DDL 中的定义3.1 事件时间3.2 处理时间 1.基础概念 1.1 流处理 流…...
【数据结构1-2】二叉树
树形结构不仅能表示数据间的指向关系,还能表示出数据的层次关系,而有很明显的递归性质。因此,我们可以利用树的性质解决更多种类的问题。 但是在平常的使用中,我们并不需要使用这么复杂的结构,只需要建立一个包含int r…...

ajax点击搜索返回所需数据
html 中body设置(css设置跟进自身需求) <p idsearch_head>学生信息查询表</p> <div id"div_1"> <div class"search_div"> <div class"search_div_item"> …...

Redis6基础知识梳理~
初识NOSQL: NOSQL是为了解决性能问题而产生的技术,在最初,我们都是使用单体服务器架构,如下所示: 随着用户访问量大幅度提升,同时产生了大量的用户数据,单体服务器架构面对着巨大的压力 NOSQL解…...

在Python中如何使用集合进行元素操作
目录 1. 创建集合 2. 添加或删除元素 3. 集合运算 4. 其他集合操作 总结 在Python中,集合(set)是一种基本的数据结构,用于存储无序且唯一的元素。这意味着集合中的每个元素都是独一无二的,且集合不保持任何元素的…...

2024年阿里云幻兽帕鲁Palworld游戏服务器优惠价格表
自建幻兽帕鲁服务器租用价格表,2024阿里云推出专属幻兽帕鲁Palworld游戏优惠服务器,配置分为4核16G和4核32G服务器,4核16G配置32.25元/1个月、10M带宽66.30元/1个月、4核32G配置113.24元/1个月,4核32G配置3个月339.72元。ECS云服务…...

Atlassian Confluence Data Center and Server 权限提升漏洞复现(CVE-2023-22515)
0x01 产品简介 Atlassian Confluence是一款由Atlassian开发的企业团队协作和知识管理软件,提供了一个集中化的平台,用于创建、组织和共享团队的文档、知识库、项目计划和协作内容。是面向大型企业和组织的高可用性、可扩展性和高性能版本。 0x02 漏洞概述 Atlassian Confl…...

打开 IOS开发者模式
前言 需要 1、辅助设备:苹果电脑; 2、辅助应用:Xcode; 3、准备工作:苹果手机 使用数据线连接 苹果电脑; 当前系统版本 IOS 17.3 通过Xcode激活 两指同时点击 Xcode 显示选择,Open Develop…...

【C语言刷题系列】交换两个变量的三种方式
文章目录 1.使用临时变量(推荐) 2.相加和相减的方式(值较大时可能丢失数据) 3.按位异或运算 本文所属专栏C语言刷题_倔强的石头106的博客-CSDN博客 两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的…...

架构师之路(十五)计算机网络(网络层协议)
前置知识(了解):计算机基础。 作为架构师,我们所设计的系统很少为单机系统,因此有必要了解计算机和计算机之间是怎么联系的。局域网的集群和混合云的网络有啥区别。系统交互的时候网络会存在什么瓶颈。 ARP协议 地址解…...

【JSON2WEB】03 go的模板包html/template的使用
Go text/template 是 Go 语言标准库中的一个模板引擎,用于生成文本输出。它使用类似于 HTML 的模板语言,可以将数据和模板结合起来,生成最终的文本输出。 Go html/template包实现了数据驱动的模板,用于生成可防止代码注入的安全的…...

3 JS类型 值和变量
计算机对value进行操作。 value有不同的类型。每种语言都有其自身的类型集合。编程语言的类型集是该编程语言的基本特性。 value需要保存一个变量中。 变量的工作机制是变成语言的另一个基本特性。 3.1概述和定义 JS类型分为: 原始类型和对象类型。 原始类型&am…...

【Android】实现简易购物车功能(附源码)
先上结果: 代码: 首先引入图片加载: implementation com.github.bumptech.glide:glide:4.15.1配置权限清单: <!-- 网络权限 --><uses-permission android:name"android.permission.INTERNET"/><uses…...

使用Excel计算--任务完成总工作日时间段
(Owed by: 春夜喜雨 http://blog.csdn.net/chunyexiyu) 引言 计算任务完成时间周期,和计算金钱一样,是一个比较细致严谨的工作。 通常,我们可能以为,完成周期形如: 任务完成周期 任务结束时间 - 任务开始时间 但是…...

.NET高级面试指南专题一【委托和事件】
在C#中,委托(Delegate)和事件(Event)是两个重要的概念,它们通常用于实现事件驱动编程和回调机制。 委托定义: 委托是一个类,它定义了方法的类型,使得可以将方法当作另一个…...

基于springboot+vue的在线教育系统(前后端分离)
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…...

54-函数的3种定义,函数的4种调用:函数模式调用,方法模式调用,构造函数模式调用,apply call bind调用
一.函数的3种定义 1.函数的声明定义:具有声明提升 <script>//函数声明定义function fn(){}</script> 2.函数的表达式定义 <script>//匿名式表达式var fn = function(){}//命名式表达式var fn1 = function a(){}</script> 3.构造函数定义 var 变量…...

[C#]winform部署yolov5实例分割模型onnx
【官方框架地址】 https://github.com/ultralytics/yolov5 【算法介绍】 YOLOv5实例分割是目标检测算法的一个变种,主要用于识别和分割图像中的多个物体。它是在YOLOv5的基础上,通过添加一个实例分割模块来实现的。 在实例分割中,算法不仅…...

C++核心编程:类和对象 笔记
4.类和对象 C面向对象的三大特性为:封装,继承,多态C认为万事万物都皆为对象,对象上有其属性和行为 例如: 人可以作为对象,属性有姓名、年龄、身高、体重...,行为有走、跑、跳、说话...车可以作为对象,属性有轮胎、方向盘、车灯…...

机器学习实验3——支持向量机分类鸢尾花
文章目录 🧡🧡实验内容🧡🧡🧡🧡数据预处理🧡🧡代码认识数据相关性分析径向可视化各个特征之间的关系图 🧡🧡支持向量机SVM求解🧡🧡直觉…...

R语言【taxlist】——clean():移除孤立的记录
Package taxlist version 0.2.4 Description 对于 taxlist 类对象的操作可能会产生独立的条目。clean() 方法就是用来删除这样的条目,并恢复 taxlist 对象的一致性。 Usage clean(object, ...)## S4 method for signature taxlist clean(object, times 2, ...) A…...

CentOS 7.9 OS Kernel Update 3.10 to 4.19
date: 2024-01-18, 2024-01-26 原 OS Kernel 3.10 升级至 4.19 1.检查默认内核 检查 vmlinuz 版本 [rootlocalhost ~]# grubby --default-kernel /boot/vmlinuz-3.10.0-1160.105.1.el7.x86_64 [rootlocalhost ~]#检查 Linux 内核版本 [rootlocalhost ~]# uname -a Linux loc…...

k8s---安全机制
k8s的安全机制,分布式集群管理工具,就是容器编排。安全机制的核心:APIserver。为整个集群内部通信的中介,也是外控控制的入口。所有的机制都是围绕apiserver来进行设计: 请求api资源: 1、认证 2、鉴权 …...

GitHub 一周热点汇总第7期(2024/01/21-01/27)
GitHub一周热点汇总第7期 (2024/01/21-01/27) ,梳理每周热门的GitHub项目,离春节越来越近了,不知道大家都买好回家的票没有,希望大家都能顺利买到票,一起来看看这周的项目吧。 #1 rustdesk 项目名称:rust…...

kotlin data clas 数据类
data class 介绍 kotlin 中 data class 是一种持有数据的特殊类 编译器自动从主构造函数中声明的所有属性导出以下成员: .equals()/.hashCode() 对 .toString() 格式是 "User(nameJohn, age42)" .componentN() 函数 按声明顺序对应于所有属性。…...