当前位置: 首页 > news >正文

深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤
就是需要对做直方图均衡化
其中主要分成灰度图以及RGB图的直方图均衡化
这俩的方法和代码不同
想要去看具体原理的朋友可以查看下面这篇博客的内容
写的很详细
颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html)

我们这个场景中会用到的就是颜色直方图均衡化了
其中包含三种方法


方法1.在BGR颜色空间下进行直方图均衡化,可以分别对每个通道进行均衡化。

以下是批量读取某个文件夹中的所有图片,并对每张图片做RGB直方图均衡化,使用OpenCV库实现彩色图像直方图均衡化(在BGR颜色空间)的代码:

import cv2
import os
import shutilfilePath = r"F:\deepl\sample\complete\road3\white"  # 用于获取文件名称列表
new_path = r"F:\deepl\sample\complete\road3\white-rgb"  # 目标文件夹
#move_path = r"F:\deepl\sample\complete\water2\sat"  # 目标文件夹file_names = filter(lambda x: x.find('png')!=-1, os.listdir(filePath))# print(file_list)for file in file_names:
# 读取彩色图像path=filePath+'\\'+fileimg = cv2.imread(path)# 分离BGR图像的通道b, g, r = cv2.split(img)# 对每个通道进行直方图均衡化equ_b = cv2.equalizeHist(b)equ_g = cv2.equalizeHist(g)equ_r = cv2.equalizeHist(r)equ_img = cv2.merge((equ_b, equ_g, equ_r))#合并均衡化后的通道# 显示均衡化前后的彩色图像path2=new_path+'\\'+filecv2.imwrite(path2, equ_img)
#cv2.imshow('Original Image', img)
#cv2.imshow('Equalized Image', equ_img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

做均衡化前后的图片如下所示:

但是,由于我的图片中有些图片存在大面积白色,因此均衡之后颜色就变成了这样:

很明显,由于白色区域的影响,这个结果明显是不对的,想了各种办法:

1、比如用PS把白色区域删掉,保存成png透明背景的再跑上面的代码,结果不对

2、用PS把上面的白色区域先变成灰色,再跑,结果也还是不对

总结原因:是因为我们上面的代码是做全局直方图均衡化,并不是局部的,因此即使是透明背景,结果做出来也不对

而且为了只让我选定的区域做直方图均衡化,其他区域不变

就需要用到下面的方法

基于掩模的特定区域直方图均衡化

这里也是参考了这位博主的文章

但这里他是对灰度图像做的,我们要做的是RGB影像

因此我对代码进行了修改,可以对RGB进行基于掩模的特定区域颜色直方图均衡化

话不多说

直接看代码

import cv2
import os
import numpy as npfilePath = r"F:\deepl\sample\complete\road3\white"  # 用于获取文件名称列表
new_path = r"F:\deepl\sample\complete\road3\white-rgb"  # 目标文件夹
mask_path = r"F:\deepl\sample\complete\road3\white-mask"  # 目标文件夹
#move_path = r"F:\deepl\sample\complete\water2\sat"  # 目标文件夹file_names = filter(lambda x: x.find('png')!=-1, os.listdir(filePath))# print(file_list)for file in file_names:
# 读取彩色图像path=filePath+'\\'+filemask_path=mask_path+'\\'+fileimg = cv2.imread(path)# 分离BGR图像的通道b, g, r = cv2.split(img)mask = cv2.imread(mask_path, 0)coord = np.where(mask == 255)print(coord)b_mask = b[coord]g_mask = g[coord]r_mask = r[coord]# 对每个通道进行直方图均衡化equ_b = cv2.equalizeHist(b_mask)equ_g = cv2.equalizeHist(g_mask)equ_r = cv2.equalizeHist(r_mask)equ_img = cv2.merge((equ_b, equ_g, equ_r))#合并均衡化后的通道img2 = img.copy()for i, C in enumerate(zip(coord[0], coord[1])):img2[C[0], C[1]] = equ_img[i][0]# 显示均衡化前后的彩色图像path2=new_path+'\\'+filecv2.imwrite(path2, img2)
#cv2.imshow('Original Image', img)
#cv2.imshow('Equalized Image', equ_img)
#cv2.waitKey(0)
#cv2.destroyAllWindows()

上面3张图分别是RGB原图,黑白掩模,均衡化后的结果

这下可以看出,我们只对其中一部分指定区域做了均衡化

成功!

但是如何批量化跑呢?

我想要让程序自动从文件夹中读取图片,自动将白色和非白色区域生成掩模,然后自动读取后制作均衡化后的结果

相关文章:

深度学习中RGB影像图的直方图均衡化python代码and对图片中指定部分做基于掩模的特定区域直方图均衡化

深度学习很重要的预处理步骤 就是需要对做直方图均衡化 其中主要分成灰度图以及RGB图的直方图均衡化 这俩的方法和代码不同 想要去看具体原理的朋友可以查看下面这篇博客的内容 写的很详细颜色直方图均衡化(https://www.cnblogs.com/wancy/p/17668345.html) 我们这个场景中会用…...

PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)

PyTorch深度学习实战(33)——条件生成对抗网络 0. 前言1. 条件生成对抗网络1.1 模型介绍1.2 模型与数据集分析 2. 实现条件生成对抗网络小结系列链接 0. 前言 条件生成对抗网络 (Conditional Generative Adversarial Network, CGAN) 是一种生成对抗网络…...

编写Bash脚本程序从记录文件中提取history命令的优化,再介绍linux bash语法和结构

目 录 一、引言 二、脚本代码实现 三、bash语法和结构 (一)基本语法 1、脚本开始与结束 2、注释 3、变量 4、数据类型 5、控制结构 6、循环控制 7、函数 8、算术运算 9、算术操作符和逻辑操作符 (二)命令相关…...

Python中Numba库装饰器

一、运行速度是Python天生的短板 1.1 编译型语言:C 对于编译型语言,开发完成以后需要将所有的源代码都转换成可执行程序,比如 Windows 下的.exe文件,可执行程序里面包含的就是机器码。只要我们拥有可执行程序,就可以随…...

Spring Boot Aop 执行顺序

Spring Boot Aop 执行顺序 1. 概述 在 spring boot 项目中,使用 aop 增强,不仅可以很优雅地扩展功能,还可以让一写多用,避免写重复代码,例如:记录接口耗时,记录接口日志,接口权限&…...

100天精通鸿蒙从入门到跳槽——第16天:ArkTS条件渲染使用教程

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》 — Go语言学习之旅!《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!100天…...

【Linux C | 进程】Linux 进程间通信的10种方式(1)

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式

前面我们说了mybatis的缓存设计体系,这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的,Mybatis中存在两级缓存。分别是一级缓存(会话级),和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…...

看图说话:Git图谱解读

很多新加入公司的同学在使用Git各类客户端管理代码的过程中对于Git图谱解读不太理解,我们常用的Git客户端是SourceTree,配合P4Merge进行冲突解决基本可以满足日常工作大部分需要。不同的Git客户端工具对图谱展示会有些许差异,以下是SourceTre…...

linux新增用户,指定home目录和bash脚本且加入到sudoer列表

前言 近3年一直用自动化脚本,搞得连useradd命令都不会用了。哈哈。 今天还碰到一个问题,有个系统没有‘useradd’和‘passwd’命令,直接蒙了。当然直接用apt install就能安装,不然还得自己编译折腾一会。新建用户 useradd -d /h…...

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程 和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有…...

OpenGL/C++_学习笔记(四)空间概念与摄像头

汇总页 上一篇: OpenGL/C_学习笔记(三) 绘制第一个图形 OpenGL/C_学习笔记(四)空间概念与摄像头 空间概念与摄像头前置科技树: 线性代数空间概念流程简述各空间相关概念详述 空间概念与摄像头 前置科技树: 线性代数 矩阵/向量定…...

C语言2024-1-27练习记录

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>//int main() //{ // char c[15] { I, ,a,n,d, ,you,. }; // int i; // for(i 0; i < 15; i) //这个地方有几个地方需要注意一下&#xff0c;首先变量指定之后必须要加上英文状态下的分号 // printf("%c&q…...

深入解析HTTPS:安全机制全方位剖析

随着互联网的深入发展&#xff0c;网络传输中的数据安全性受到了前所未有的关注。HTTPS&#xff0c;作为HTTP的安全版本&#xff0c;为数据在客户端和服务器之间的传输提供了加密和身份验证&#xff0c;从而确保了数据的机密性、完整性和身份真实性。本文将详细探讨HTTPS背后的…...

【197】JAVA8调用阿里云对象存储API,保存图片并获取图片URL地址。

实际工作中&#xff0c;需要用阿里云对象存储保存图片&#xff0c;并且在上传图片到阿里云对象存储服务器后&#xff0c;获取图片在阿里云对象存储服务器的URL地址&#xff0c;以便给 WEB 前端显示。 阿里云对象存储上传图片的工具类 package zhangchao;import com.aliyun.os…...

2024.1.24 C++QT 作业

思维导图 练习题 1.提示并输入一个字符串&#xff0c;统计该字符中大写、小写字母个数、数字个数、空格个数以及其他字符个数 #include <iostream> #include <string.h> #include <array> using namespace std;int main() {string str;cout << "…...

jenkins部署过程记录

一、jenkins部署git链接找不到 原因分析&#xff1a; 机器的git环境不是个人git的权限&#xff0c;所以clone不了。Jenkins的master节点部署机器已经部署较多其他的job在跑&#xff0c;如果直接修改机器的git配置&#xff0c;很可能影响到其他的job clone 不了代码&#xff0c…...

JS-策略设计模式

设计模式&#xff1a;针对特定问题提出的简洁优化的解决方案 一个问题有多种处理方案&#xff0c;而且处理方案随时可能增加或减少比如&#xff1a;商场满减活动 满50元减5元满100元减15元满200元减35元满500元减100元 // 满减金额计算函数 function count(money, type) {if …...

漏洞复现-EduSoho任意文件读取漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…...

「QT」QString类的详细说明

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C++」C/C++程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...