Android 基础技术——Bitmap
笔者希望做一个系列,整理 Android 基础技术,本章是关于 Bitmap
Bitmap 内存如何计算
占用内存 = 宽 * 缩放比例 * 高 * 缩放比例 * 每个像素所占字节
缩放比例 = 设备dpi/图片所在目录的dpi

Bitmap加载优化?不改变图片质量的情况下怎么优化?
不同的Conifg代表每个像素不同的占用空间,所以如果我们把默认的ARGB_8888改成RGB_565,那么每个像素占用空间就会由4字节变成2字节了,那么图片所占内存就会减半了。
inSampleSize,采样率,这个参数是用于图片尺寸压缩的,他会在宽高的维度上每隔inSampleSize个像素进行一次采集,从而达到缩放图片的效果。这种方法只会改变图片大小,不会影响图片质量。
inJustDecodeBounds是什么?
要获取图片本身的大小,如果直接decodeResource加载一遍的话,那么就会增加内存了,所以官方提供了这样一个参数inJustDecodeBounds。如果inJustDecodeBounds为ture,那么decode的bitmap为null,也就是不返回实际的bitmap,只把图片的大小信息放到了options的值中。
所以这个参数就是用来获取图片的大小信息的同时不占用内存。
Bitmap内存复用怎么实现
- inBitmap要和inMutable属性配套使用,否则将无法复用。
- 在Android 4.4之前,只能重用相同大小的 Bitmap 内存区域;4.4之后只要复用内存空间的Bitmap对象大小比 inBitmap指向的内存空间要小即可。
所以一般在复用之前,还要判断下,新的Bitmap内存是不是小于可以复用的Bitmap内存,然后才能进行复用。
高清大图加载该怎么处理?
要对图片进行局部显示,这就用到BitmapRegionDecoder属性,主要用于显示图片的某一块矩形区域。
fun setImagePart() {
val inputStream: InputStream = assets.open("test.jpg")
val bitmapRegionDecoder: BitmapRegionDecoder =
BitmapRegionDecoder.newInstance(inputStream, false)
val options = BitmapFactory.Options()
val bitmap = bitmapRegionDecoder.decodeRegion(
Rect(0, 0, 100, 100), options)
image.setImageBitmap(bitmap)
}
如何跨进程传递大图?
- Bundle直接传递。bundle最常用于Activity间传递,也属于跨进程的一种方式,但是传递的大小有限制,一般为1M。
Bitmap之所以可以直接传递,是因为其实现了Parcelable接口进行了序列化。而Parcelable的传递原理是利用了Binder机制,将Parcel序列化的数据写入到一个共享内存(缓冲区)中,读取的时候也会从这个缓冲区中去读取字节流,然后再反序列化成对象使用。这个共享内存也就是缓存区有一个大小限制—1M,而且是公用的。所以传图片的话很容易就容易超过这个大小然后报错TransactionTooLargeException。
所以这个方案不可靠。
文件传输
将图片保存到文件,然后只传输文件路径,这样肯定是可以的,但是不高效。
putBinder
//传递binder
val bundle = Bundle()
bundle.putBinder("bitmap", BitmapBinder(mBitmap))//接收binder中的bitmap
val imageBinder: BitmapBinder = bundle.getBinder("bitmap") as BitmapBinder
val bitmap: Bitmap? = imageBinder.getBitmap()//Binder子类
class BitmapBinder :Binder(){private var bitmap: Bitmap? = nullfun ImageBinder(bitmap: Bitmap?) {this.bitmap = bitmap}fun getBitmap(): Bitmap? {return bitmap}
}
为什么用putBinder就没有大小限制了呢?
- 因为putBinder中传递的其实是一个文件描述符fd,文件本身被放到一个共享内存中,然后获取到这个fd之后,只需要从共享内存中取出Bitmap数据即可,这样传输就很高效了。
(文件路径不也是?其实不同,文件描述符还用到 Mmap 虚拟内存和实际物理内存映射,更加高效)
- 而用Intent/bundle直接传输的时候,会禁用文件描述符fd,只能在parcel的缓存区中分配空间来保存数据,所以无法突破1M的大小限制。
文件描述符是一个简单的整数,用以标明每一个被进程所打开的文件和socket。第一个打开的文件是0,第二个是1,依此类推。
相关文章:
Android 基础技术——Bitmap
笔者希望做一个系列,整理 Android 基础技术,本章是关于 Bitmap Bitmap 内存如何计算 占用内存 宽 * 缩放比例 * 高 * 缩放比例 * 每个像素所占字节 缩放比例 设备dpi/图片所在目录的dpi Bitmap加载优化?不改变图片质量的情况下怎么优化&am…...
数据结构奇妙旅程之七大排序
꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …...
【JavaScript】Generator
MDN-Generator Generator对象由生成器函数返回,并且它符合可迭代协议和迭代器协议。 Generator-核心语法 核心语法: 定义生成器函数获取generator对象yield表达式的使用通过for of获取每一个yield的值 // 1. 通过function* 创建生成器函数 function* foo() {//…...
河南省考后天网上确认,请提前准备证件照哦
✔报名时间:2024年1月18号一1月24号 ✔报名确认和缴费:2024年1月 31号一2月4号 ✔准考证打印:2024年3月12号一3月17号 ✔笔试时间:2024年3月16日-2024年3月17日。 ✔面试时间:面试时间拟安排在2024年5月中旬 报名网址&…...
【前端】防抖和节流
防抖 防抖用于限制连续触发的事件的执行频率。当一个事件被触发时,防抖会延迟一定的时间执行对应的处理函数。如果在延迟时间内再次触发了同样的事件,那么之前的延迟执行将被取消,重新开始计时。 总结:在单位时间内频繁触发事件,只有最后一次生效 场景 :用户在输入框输…...
【网络】:网络套接字(UDP)
网络套接字 一.网络字节序二.端口号三.socket1.常见的API2.封装UdpSocket 四.地址转换函数 网络通信的本质就是进程间通信。 一.网络字节序 我们已经知道,内存中的多字节数据相对于内存地址有大端和小端之分, 磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分,网…...
Linux编程 1/2 数据结构
数据结构: 程序 数据结构 算法 1.数据结构: 1.时间复杂度: 数据量的增长与程序运行时间增长所呈现的比例函数,则称为时间渐进复杂度函数简称时间复杂度 O(c) > O(logn)> O(n) > O(nlogn) > O(n^2) > O(n^3) > O(2^n) 2.空间复杂度: 2.类…...
【UE Niagara】实现闪电粒子效果的两种方式
目录 效果 步骤 方式一(网格体渲染器) (1)添加网格体渲染器 (2)修改粒子显示方向 (3)添加从上到下逐渐显现的效果 (4)粒子颜色变化 方式二࿰…...
js数组/对象的深拷贝与浅拷贝
文章目录 一、js中的深拷贝和浅拷贝二、浅拷贝1、Object.assign()2、利用es6扩展运算符(...) 二、深拷贝1、JSON 序列化和反序列化2、js原生代码实现3、使用第三方库lodash等 四、总结 一、js中的深拷贝和浅拷贝 在JS中,深拷贝和浅拷贝是针对…...
HCIA学习第六天:OSPF:开放式最短路径优先协议
OSPF:开放式最短路径优先协议 无类别链路状态IGP动态路由协议 1.距离矢量协议:运行距离矢量协议的路由器会周期性的泛洪自己的路由表。通过路由的交互,每台路由器从相邻的路由器学习到路由,并且加载进自己的路由表中;…...
从四个方面来解决企业在项目管理中遇到的各类问题
案例背景:某建筑集团有限公司成立于1949年,拥有国家房屋建筑工程施工总承包一级、建筑装修装饰工程专业承包一级、市政公用工程施工总承包一级资质。是一家集建筑施工、设备安装、装饰装潢、仿古建筑、房地产开发、建材试验为一体的具有综合生产能力的建…...
使用代码取大量2*2像素图片各通道均值,存于Excel文件中。
任务是取下图RGB各个通道的均值及标签(R, G,B,Label),其中标签由图片存放的文件夹标识。由于2*2像素图片较多,所以将结果放置于Excel表格中,之后使用SVM对他们进行分类。 from PIL import Image import os …...
React16源码: React中commit阶段的commitBeforeMutationLifecycles的源码实现
commitBeforeMutationLifecycles 1 )概述 在 react commit 阶段的 commitRoot 第一个while循环中调用了 commitBeforeMutationLifeCycles现在来看下,里面发生了什么 2 )源码 回到 commit 阶段的第一个循环中,在 commitRoot 函数…...
压制二元组的总价值
压制二元组的总价值 对于每一个 a i a_i ai, 看它能压制它前面的多少个元素, 那么它对总价值的贡献就是: 在a数组中: a i a_i ai压制了x个数, 贡献为: x ∗ i x*i x∗i被 a i a_i ai所压制的所有数在 a a a中的下标和为 y y y, 贡献为 − y -y −y 树状数组来求: 为了…...
【习题】保存应用数据
判断题 1. 首选项是关系型数据库。 错误(False) 2. 应用中涉及到Student信息,如包含姓名,性别,年龄,身高等信息可以用首选项来存储。 错误(False) 3. 同一应用或进程中每个文件仅存在一个Preferences实例。 正确(True) 单选题 …...
Flask框架小程序后端分离开发学习笔记《5》简易服务器代码
Flask框架小程序后端分离开发学习笔记《5》 Flask是使用python的后端,由于小程序需要后端开发,遂学习一下后端开发。 简易服务器代码 接口解析那一块很关键,学后端服务器这一块,感觉主要就是学习相应地址的接口怎么处理。 然后…...
“计算机视觉处理设计开发工程师”专项培训(第二期)
“人工智能技术与咨询” 发布...
R语言学习case7:ggplot基础画图(核密度图)
step1: 导入ggplot2库文件 library(ggplot2)step2:带入自带的iris数据集 iris <- datasets::irisstep3:查看数据信息 dim(iris)维度为 [150,5] head(iris)查看数据前6行的信息 step4:画图展示 plot2 <- ggplot(iris,aes(Sepal.W…...
Ubuntu18配置Docker
1.基本过程 1.更新软件源列表 sudo apt update2.安装软件包依赖 sudo apt install apt-transport-https ca-certificates curl software-properties-common3.在系统中添加Docker的官方密钥 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - …...
Keil/MDK平台 - 结构体成员指针注意事项
文章目录 1 . 前言总结2 . 问题现象3 . 解决思路4 . 细节扩展5 . 总结 【极客技术传送门】 : https://blog.csdn.net/Engineer_LU/article/details/135149485 1 . 前言总结 有时候希望通过类定义的类型指向数据包来解析,恰好又想结构体内定义指针指向一段数据&…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
