当前位置: 首页 > news >正文

【lesson24】MySQL索引的理解

文章目录

  • 建立测试表
  • 插入多条记录
  • 查看插入结果
  • 中断一下---为何IO交互要是 Page
  • 重谈page
    • 理解单个page
    • 理解多个page
  • 页目录
  • 单页情况
  • 多页情况
  • 复盘一下
  • InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?
  • B+ vs B
  • 聚簇索引 VS 非聚簇索引

建立测试表

在这里插入图片描述
在这里插入图片描述

插入多条记录

在这里插入图片描述

查看插入结果

在这里插入图片描述
发现竟然默认是有序的!
我们向一个具有主键的表中,乱序插入数据,发现数据会自动排序。
谁做的?mysql
为什么这么做?(问题1)

中断一下—为何IO交互要是 Page

为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?

如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。

但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。

你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理。往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。

重谈page

理解单个page

如何理解mysql中page的概念?
mysql内部一定需要并且会存在大量的page,也就决定了mysql必须要将对个同时存在的page管理起来!

这是就用到了之前学的六字真言,要管理所有mysql的page,需要先描述,再组织

所以不要简单的认为page是一个内存块,page内部也必须写入对应的管理信息!

在这里插入图片描述
不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表

将所有的page用“链表”的形式管理起来--在buffer pool内部。

因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。

为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗?
插入数据时排序的目的,就是优化查询的效率。
页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。
正式因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。

理解多个page

  • 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据
  • 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率也太低了

在这里插入图片描述

页目录

我们在看《谭浩强C程序设计》这本书的时候,如果我们要看<指针章节>,找到该章节有两种做法:

  • 从头逐页的向后翻,直到找到目标内容
  • 通过书提供的目录,发现指针章节在234页(假设),那么我们便直接翻到234页。同时,查找目录的方案,可以顺序找,不过因为目录肯定少,所以可以快速提高定位
  • 本质上,书中的目录,是多花了纸张的,但是却提高了效率
  • 所以,目录,是一种“空间换时间的做法”

单页情况

针对上面的单页Page,我们能否也引入目录呢?当然可以
在这里插入图片描述
那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率
现在我们可以再次正式回答上面的问题了,所以为何通过键值 MySQL 会自动排序?
问题1答案:可以很方便的引入目录

多页情况

MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据

在这里插入图片描述
在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。

需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会在新Page上面,这里仅仅做演示。

这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。

那么如何解决呢解决方案,其实就是我们之前的思路,给Page也带上目录。

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值
  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行
  • 其中,每个目录项的构成是:键值+指针。图中没有画全。

在这里插入图片描述

存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page

其实目录页的本质也是页普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址

可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?
不用担心,可以在加目录页
在这里插入图片描述
这货就是传说中的B+树啊?
没错,至此,我们已经给我们的表user构建完了主键索引。

随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就提高了。

复盘一下

  • Page分为目录页和数据页目录页只放各个下级Page的最小键值
  • 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减少了IO次数

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

  • 链表?线性遍历
  • 二叉搜索树?退化问题,可能退化成为线性结构
  • AVL&&红黑树?虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IOPage交互。虽然你很秀,但是有更秀的。
  • Hash?官方的索引实现方式中MySQL 是支持HASH的,不过 InnoDB 和 MyISAM并不支持.Hash跟进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行,另外还有其他差别,有兴趣可以查一下。

在这里插入图片描述
B树?最值得比较的是 InnoDB 为何不用B树作为底层索引?

B+ vs B

B树:
在这里插入图片描述
B+树
在这里插入图片描述
目前这两棵树,对我们最有意义的区别是:

  • B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针
  • B+叶子节点,全部相连,而B没有

B+树特点

  • 1.叶子节点保存有效数据,路上节点没有非叶子节点不保存数据,只保存目录项
  • 2.叶子节点全部用链表级联起来,非叶子节点不存数据可以存储更多的目录项,目录页可以管理更多的叶子page
  • 3.B+树是矮胖型的

B+树是矮胖型的优点:
途径的路上节点减少->找到目标数据只需要更少的page!IO次数少!IO层面提高了效率->每一个节点都有目录项,可以提高搜索效率(整体搜索效率也随之提高了)

所以为何选择B+树?

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
  • 叶子节点相连,更便于进行范围查找

一般我们建表插入数据的时候,就是在该结构下进行CURD!我的表没有主键怎么帮呢?也是这样吗?对的

B+树结构被构建在mysql的缓冲区中。

聚簇索引 VS 非聚簇索引

MyISAM 存储引擎-主键索引

MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引,Col1 为主键。

在这里插入图片描述

其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的
在这里插入图片描述
在这里插入图片描述
其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引
在这里插入图片描述

其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引

当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引

对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。

下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别

在这里插入图片描述
同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:
在这里插入图片描述

可以看到,InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。

所以通过辅助(普通)索引,找到目标记录,需要两遍索引
首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询

为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?
原因就是太浪费空间了

在这里插入图片描述

相关文章:

【lesson24】MySQL索引的理解

文章目录 建立测试表插入多条记录查看插入结果中断一下---为何IO交互要是 Page重谈page理解单个page理解多个page 页目录单页情况多页情况复盘一下InnoDB 在建立索引结构来管理数据的时候&#xff0c;其他数据结构为何不行&#xff1f;B vs B聚簇索引 VS 非聚簇索引 建立测试表…...

Oracle篇—分区索引的重建和管理(第三篇,总共五篇)

☘️博主介绍☘️&#xff1a; ✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ ✌✌️擅长Oracle、MySQL、SQLserver、Linux&#xff0c;也在积极的扩展IT方向的其他知识面✌✌️ ❣️❣️❣️大佬们都喜欢静静的看文章&#xff0c;并且也会默默的点赞收藏加关注❣…...

前端大厂面试题探索编辑部——第一期

目录 简介 题目 单选题 题解 A选项的Content-Security-Policy http-equiv属性 content属性 B选项的CSRF 使用CSRF Token 验证Referer和Origin头 C选项的HTTP Only D选项的防止SQL注入 输入验证和转义 简介 这个是一个长系列&#xff0c;我会以题目为导向&#xff…...

图扑 HT UI 5.0 全新升级,开箱即用!

为顺应数字时代的不断发展&#xff0c;图扑 HT UI 5.0 在原有功能强大的界面组件库的基础上进行了全面升级&#xff0c;融入了更先进的技术、创新的设计理念以及更加智能的功能。HT UI 5.0 使用户体验更为直观、个性化&#xff0c;并在性能、稳定性和安全性等方面达到新的高度。…...

数据结构----链表介绍、模拟实现链表、链表的使用

文章目录 1. ArrayList存在的问题2. 链表定义2.1 链表的概念及结构2.2 链表的组合类型 3. 链表的实现3.1 单向、不带头、非循环链表的实现3.2 双向、不带头节点、非循环链表的实现 4.LinkedList的使用4.1 什么是LinkedList4.2 LinkedList的使用4.2.1. LinkedList的构造4.2.2. L…...

微信小程序如何控制元素的显示和隐藏

目录 方式一:display 方式二:wx:if 有时在微信小程序元素的显示需要通过特定的条件,比如组件的显示,通常需要在主界面有指定操作。可以通过以下两种方式控制元素的显示和隐藏。 方式一:display 在wxml或者wxss中设置display样式可以控制元素显示情况,元素默认显示,可…...

解决ssh: connect to host github.com port 22: Connection timed out

当连接 GitHub 时无法连接到 22 端口时&#xff0c;可以尝试将端口更换为 443 首先&#xff0c;尝试使用以下命令从 GitHub 克隆仓库&#xff1a; $ git clone gitgithub.com:xxxxx/xxxx.git my-awesome-proj如果出现以下错误信息&#xff1a; Cloning into my-awesome-proj…...

idea 创建 spring boot

1.创建步骤 2. 编码添加 2.1 这是自动生成的启动函数 package com.example.comxjctest4;import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication;SpringBootApplication public class Application {publi…...

【智能家居入门之微信小程序控制下位机】(STM32、ONENET云平台、微信小程序、HTTP协议)

实现微信小程序控制单片机外设动作 一、使用ONENET可视化组件控制单片机外设动作二、使用微信小程序控制单片机外设动作三、总结 本篇博客话接上文&#xff1a; https://blog.csdn.net/m0_71523511/article/details/135892908 上一篇博客实现了微信小程序接收单片机上传的数据…...

07.领域驱动设计:了解3种常见微服务架构模型的对比和分析

目录 1、概述 2、整洁架构 3、六边形架构 4、三种微服务架构模型的对比和分析 5、从三种架构模型看中台和微服务设计 5.1 中台建设要聚焦领域模型 5.2 微服务要有合理的架构分层 5.2.1 项目级微服务 5.2.2 企业级中台微服务 5.3 应用和资源的解耦与适配 6、总结 1、概…...

设计模式——模板方法模式(Template Method Pattern)

概述 模板方法模式&#xff1a;定义一个操作中算法的框架&#xff0c;而将一些步骤延迟到子类中。模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。模板方法模式是一种基于继承的代码复用技术&#xff0c;它是一种类行为型模式。模板方法模式是结…...

07. STP的基本配置

文章目录 一. 初识STP1.1. STP概述1.2. STP的出现1.3. STP的作用1.4. STP的专业术语1.5. BPDU的报文格式1.6. STP的选择原则&#xff08;1&#xff09;选择根桥网桥原则&#xff08;2&#xff09;选择根端口原则 1.7. 端口状态1.8. STP报文类型1.9. STP的收敛时间 二. 实验专题…...

oracle分区范围修改与数据迁移处理

背景 由于对应用上线后流量越来越大&#xff0c;原来的按年自动分区性能跟不上&#xff0c;因此决定改成按月自动分区&#xff0c;同时将原有分区数据重新迁移到新的分区 步骤 修改表分区为一个月一个分区 alter table my_table set INTERVAL (NUMTOYMINTERVAL(1, month));…...

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测 目录 回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSSVM【24年…...

SeaTunnel Web安装 一把成

安装相关jar包&#xff0c;以及SeaTunnel 和Web 打成的包&#xff0c;可以直接使用&#xff0c;但是需要安装MySQL客户端的分享&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1qrt1RAX38SgIpNklbQJ7pA 提取码&#xff1a;0kmf 1. 环境准备 环境名称版本系统环境C…...

对话泛能网程路:能源产业互联网,行至中程

泛能网的能源产业互联网的标杆价值还不仅于此。其在产业互联之外&#xff0c;也更大的特殊性在于其也更在成为整个碳市场的“辅助运营商”&#xff0c;包括电力、碳等一系列被泛能网帮助企业改造和沉淀的要素资产&#xff0c;都在构成着碳交易市场的未来底层。 这恰是产业互联…...

Doris简介及单机部署(超详细)

文章目录 一、Doris简介1、Doris介绍2、Doris架构 二、Doris单机部署&#xff08;Centos7.9&#xff09;1、下载Doris2、准备环境3、安装部署3.1 创建存储目录3.2 配置 FE3.3 启动 FE3.4 查看 FE 运行状态3.5 配置 BE3.6 启动 BE3.7 添加 BE 节点到集群3.8 查看 BE 运行状态3.9…...

Pytest 识别case规则

一、Python测试框架&#xff0c;主要特点有以下几点&#xff1a; 简单灵活&#xff0c;容易上手&#xff1b;支持参数化&#xff1b;能够支持简单的单元测试和复杂的功能测试&#xff0c;还可以用来做selenium/appnium等自动化测试、接口自动化测试&#xff08;pytestrequests…...

gorm+mysql查询/修改json列相关操作汇总

目录 具体操作 1&#xff0c;查询JSON段落指定key的值是否有等于value的 或 指定keyvalue的数据记录 2&#xff0c;查询JSON段落中price>19的记录 3&#xff0c;查询JSON段中key为k0的记录 4、JSON段落中提取指定键值对到指定结构 5&#xff0c;查询JSON数组是否包含…...

CMake-Cookbook 第0章 配置环境

文章目录 第0章 配置环境0.1 获取代码0.2 Docker镜像0.3 安装必要的软件0.3.1 获取CMake0.3.2 编译器0.3.3 自动化构建工具0.3.4 Python0.3.5 依赖软件0.3.5.1 BLAS和LAPACk0.3.5.2 消息传递接口(MPI)0.3.5.3 线性代数模板库0.3.5.4 Boost库0.3.5.5 交叉编译器0.3.5.6 ZeroMQ, …...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...

电脑桌面太单调,用Python写一个桌面小宠物应用。

下面是一个使用Python创建的简单桌面小宠物应用。这个小宠物会在桌面上游荡&#xff0c;可以响应鼠标点击&#xff0c;并且有简单的动画效果。 import tkinter as tk import random import time from PIL import Image, ImageTk import os import sysclass DesktopPet:def __i…...