当前位置: 首页 > news >正文

SS-ELM-AE与S2-BLS相关论文阅读记录

Broad learning system for semi-supervised learning

摘要:本文认为,原始BLS采用的稀疏自编码器来生成特征节点是一种无监督学习方法,这意味着忽略了标注数据的一些信息,并且难以保证同类样本之间的相似性和相邻性,同时SS-BLS和BLS都是构造线性模型,当不同类的样本分布存在重叠时,难以取得良好的分类效果。因此本文提出了一种新的半监督BLS——S2-BLS。

SS-ELM-AE

本文认为,SS-BLS或者是SS-ELM在引入非监督信息,即流形化的时候,考虑到选取k近邻点的情况,但是这种方法可能存在的缺点就是如果大多数标注样本它们所选择的k个近邻点都是标注样本,然后大多数无标注样本所选择的k个近邻点都是无标注样本,那么就没有充分利用到标注样本和未标注样本之间的关系。因此将SS-ELM-AE的目标函数定义为:
LSS−ELM−AE=12∥HW−X∥F2+C2∥W∥F2+λ2(GLL+GLU)L_{SS-ELM-AE}=\frac{1}{2}\Vert HW-X\Vert^2_F+\frac{C}{2}\Vert W\Vert^2_F+\frac{\lambda}{2}(G_{LL}+G_{LU}) LSSELMAE=21HWXF2+2CWF2+2λ(GLL+GLU)
其中X代表所有样本。而GLL、GLUG_{LL}、G_{LU}GLLGLU分别代表标注样本内部之间的信息以及标注样本和无标注样本之间的信息。

对于标注样本,其相似度矩阵定义为:
SijL={1yi,yj∈t0otherwiseS^L_{ij}=\begin{cases}1\quad y_i,y_j \in t\\0\quad otherwise\end{cases} SijL={1yi,yjt0otherwise
就是属于同类的相似度为1,否则为0。因此GLLG_{LL}GLL表示为:
GLL=12∑i=1l∑j=1lSijL∥g(xi)−g(xj)∥F2G_{LL}=\frac{1}{2}\sum_{i=1}^l\sum_{j=1}^lS^L_{ij}\Vert g(x_i)-g(x_j)\Vert ^2_F GLL=21i=1lj=1lSijLg(xi)g(xj)F2
其中g(x)g(x)g(x)代表模型对样本的输出。

而对于未标注样本,其相似性矩阵定义为:
SijLU={1xi∈knn(xj),j∗orxj∈knn(xi),i∗0otherwiseS^{LU}_{ij}=\begin{cases}1\quad x_i\in knn(x_j),j^* ~~or ~~x_j\in knn(x_i),i^*\\0\quad otherwise\end{cases} SijLU={1xiknn(xj),j  or  xjknn(xi),i0otherwise
其中j∗j^*j表示如果xjx_jxj是标注样本,那么其k个近邻点要从未标注样本之中选择。因此
GLU=12∑i=1l+u∑j=1l+uSijLU∥g(xi)−g(xj)∥F2G_{LU}=\frac{1}{2}\sum_{i=1}^{l+u}\sum_{j=1}^{l+u}S^{LU}_{ij}\Vert g(x_i)-g(x_j)\Vert ^2_F GLU=21i=1l+uj=1l+uSijLUg(xi)g(xj)F2
那么可以将该矩阵写为:
SLU=(0LLSLUSULSUU)S_{LU}=\left(\begin{matrix}0_{LL}\quad S_{LU}\\S_{UL }\quad S_{UU}\end{matrix}\right) SLU=(0LLSLUSULSUU)
斜对角线两个矩阵应该是转置关系。SUUS_{UU}SUU就是简单的knn来计算。因此有:

在这里插入图片描述

其中G=[g(x1);...;g(xl+u)]G=[g(x_1);...;g(x_{l+u})]G=[g(x1);...;g(xl+u)]。L定义为:
L=D−SD=diag(d1,...,dl+u),di=∑i=1l+uSijS=(SLSLUSULSUU)L=D-S\\D=diag(d_1,...,d_{l+u}),d_i=\sum_{i=1}^{l+u}S_{ij}\\S=\left(\begin{matrix}S^L\quad S_{LU}\\S_{UL}\quad S_{UU}\end{matrix}\right) L=DSD=diag(d1,...,dl+u),di=i=1l+uSijS=(SLSLUSULSUU)
因此可以推导出:
LSS−ELM−AE=12∥HW−X∥F2+C2∥W∥F2+λ2Tr(WTHTLHW)L_{SS-ELM-AE}=\frac{1}{2}\Vert HW-X\Vert^2_F+\frac{C}{2}\Vert W\Vert^2_F+\frac{\lambda}{2}Tr(W^TH^TLHW) LSSELMAE=21HWXF2+2CWF2+2λTr(WTHTLHW)
当输出节点输出多于隐藏层节点数目,可解出:

在这里插入图片描述

否则:

在这里插入图片描述

注意这里的损失函数是重构误差,因此可以看成是一个结合ELM思想的AE,是用来求解输入到隐藏层的权重的,而不是像ELM最终求解隐藏层到输出的权重的。

因此求解输入到特征节点映射的权重过程为:
在这里插入图片描述

S2-BLS

该算法就是对原有SS-BLS算法的改良,其利用了同样样本间的相似性和近邻点间的相似性信息来获取映射后的特征,同时考虑了类内紧性和类间可分性,获得更好的判别模型。具体来说:

其特征节点的定义比较特殊,用到了非线性激活函数,即:
Zi=ϕi(XWeiT),i=1,2,...,nZ_i=\phi_{i}(XW^T_{ei}),i=1,2,...,n Zi=ϕi(XWeiT),i=1,2,...,n
其中权重WeiW_{ei}Wei正是通过SS-ELM-AE来获得的,而ϕ\phiϕ是非线性函数。然后狗仔增强节点的过程与普通BLS相同,因此得到P=[Zn∣Hm]P=[Z^n\mid H^m]P=[ZnHm]

那么在计算输出权重时,其考虑了类内紧性和类间可分性,即:

在这里插入图片描述

因此构造的损失项为:

在这里插入图片描述

其中F=[F1;...;Fl+u]F=[F_1;...;F_{l+u}]F=[F1;...;Fl+u]为对每个样本模型的预测向量,Lintra=Dintra−Sintra=diag(d1intra,...,dl+uintra)L_{intra}=D^{intra}-S_{intra}=diag(d^{intra}_1,...,d^{intra}_{l+u})Lintra=DintraSintra=diag(d1intra,...,dl+uintra)diintra=∑i=1l+uSintraijd^{intra}_i=\sum_{i=1}^{l+u}S^{ij}_{intra}diintra=i=1l+uSintraij

在这里插入图片描述

其中LinterL_{inter}Linter也类似。

那么结合这两个L矩阵,可以用参数进行衡量。因此目标函数为:

在这里插入图片描述

其中
U=(Ul×l,000)Ul×l=diag(1,...,1)F=Pβ,β为连接权重L~=ηLintra−(1−η)LinterU=\left(\begin{matrix}U_{l\times l},\quad 0\\~~~0\quad ~~~~0\end{matrix}\right)\\U_{l\times l}=diag(1,...,1)\\F=P\beta, ~~~~\beta 为连接权重\\\tilde{L}=\eta L_{intra}-(1-\eta)L_{inter} U=(Ul×l,0   0    0)Ul×l=diag(1,...,1)F=,    β为连接权重L~=ηLintra(1η)Linter
当样本数目多于隐藏层节点数目,可解出

在这里插入图片描述

否则:

在这里插入图片描述
其示意图大致如下所示:
在这里插入图片描述
伪代码如下所示:
在这里插入图片描述

总结

这篇文章从两部分作为创新点,一是原先BLS的AE寻求特征节点映射的部分,这部分它结合了ELM的思想来求解权重向量,第二部分是在求解链接输出的权重时,加入了类内和类间样本之间的关系矩阵。

相关文章:

SS-ELM-AE与S2-BLS相关论文阅读记录

Broad learning system for semi-supervised learning 摘要:本文认为,原始BLS采用的稀疏自编码器来生成特征节点是一种无监督学习方法,这意味着忽略了标注数据的一些信息,并且难以保证同类样本之间的相似性和相邻性,同…...

ESP32设备驱动-MAX6675冷端补偿K热电偶数字转换器

MAX6675冷端补偿K热电偶数字转换器 1、MAX6675介绍 MAX6675执行冷端补偿并将来自K型热电偶的信号数字化。 数据以 12 位分辨率、SPI™ 兼容的只读格式输出。 该转换器可将温度解析为 0.25C,读数高达 +1024C,并且在 0C 至 +700C 的温度范围内具有 8 LSB 的热电偶精度。 MAX…...

Python基础知识汇总(字符串四)

目录 字母的大小写转换 lower()方法 upper()方法 删除字符串中的空格和特殊字符 strip()方法...

C语言学习笔记——指针(初阶)

前言 指针可以说是C语言基础语法中最难的理解的知识之一,很多新手(包括我)刚接触指针时都觉得很难。在我之前发布的笔记中都穿插运用了指针,但是我一直没有专门出一期指针的笔记,这是因为我确实还有些细节至今还不太清…...

阿赵的MaxScript学习笔记分享十二《获取和导出各种数据》

大家好,我是阿赵,周日的早上继续分享MaxScript学习笔记,这是第十二篇,获取和导出各种数据 1、导出数据的目的 使用3DsMax建立3D模型后,很多时候需要输出模型到别的引擎去使用,常用的格式有Obj、FBX、SLT等…...

react-draggable实现拖拽详解

react-draggable属性常用属性属性列表事件列表举例首先安装 react-draggable实现移动希望小编写的能够帮助到你😘属性 常用属性 属性默认值介绍axisxhandle拖动的方向,可选值 x ,y,bothhandle无指定拖动handle的classposition无handle的位置&#xff0…...

01.进程和线程的区别

进程和线程的区别进程和线程是计算机中的两个核心概念,它们都是用来实现并发执行的方式,但是它们在实现并发的方式和资源管理方面有一些重要的区别。进程是一个程序的运行实例。每个进程都有自己的内存空间、代码、数据和系统资源(如文件描述…...

逻辑优化-rewrite

简介 逻辑综合中的rewrite算法是一种常见的优化算法,其主要作用是通过对逻辑电路的布尔函数进行等效变换,从而达到优化电路面积、时序和功耗等目的。本文将对rewrite算法进行详细介绍,并附带Verilog代码示例。 一、算法原理 rewrite算法的…...

文件传输与聊天系统设计

技术:Java等摘要:本文介绍了一种基于TCP/IP协议使用Socket技术实现的聊天室系统,包括私聊功能和文件传输功能,对系统的主要模块进行了分析,并对系统实现过程中遇到的关键性技术进行了阐述,最后对系统进行了…...

蓝桥杯第十四届校内赛(第三期) C/C++ B组

一、填空题 (一)最小的十六进制 问题描述   请找到一个大于 2022 的最小数,这个数转换成十六进制之后,所有的数位(不含前导 0)都为字母(A 到 F)。   请将这个数的十进制形式作…...

有关平方或高次方的公式整理一元高次方程的求解

Part.I Introduction 这篇博文记录一下数学中常用的有关平方或高次方的一些公式。 Chap.I 一些结论 下面一部分汇总了一些重要的结论 完全平方公式:(ab)2a22abb2(ab)^2a^22abb^2(ab)2a22abb2平方差公式:a2−b2(ab)(a−b)a^2-b^2(ab)(a-b)a2−b2(ab)(…...

Java笔记3

ArrayListArrayList<String> list new Arraylist<>();<>是泛型表示存放的数据类型&#xff0c;注意不能是基本数据类型&#xff1b;增删改查增&#xff1a;add 返回值为true删&#xff1a;remove 1.直接删元素2.根据索引删元素改&#xff1a;set&#xff08…...

Leetcode.2202 K 次操作后最大化顶端元素

题目链接 Leetcode.2202 K 次操作后最大化顶端元素 Rating &#xff1a; 1717 题目描述 给你一个下标从 0开始的整数数组 nums&#xff0c;它表示一个 栈 &#xff0c;其中 nums[0]是栈顶的元素。 每一次操作中&#xff0c;你可以执行以下操作 之一 &#xff1a; 如果栈非空…...

JAVA知识点全面总结3:String类的学习

三.String类学习 1.String&#xff0c;StringBuffer&#xff0c;StringBuilder的区别&#xff1f; 2.字符串拼接用加号的原理 &#xff1f; 3.字符串常量池如何理解&#xff1f; 4.String的intern方法理解&#xff1f; 5.String的equals方法和compareTo方法的使用&#xf…...

Eureka注册中心和Nacos注册中心详解以及Nacos与Eureka有什么区别?

目录&#xff1a;前言Eureka注册中心Nacos注册中心Nacos与Eureka有什么区别&#xff1f;前言提供接口给其它微服务调用的微服务叫做服务提供者&#xff0c;而调用其它微服务提供的接口的微服务则是服务消费者。如果服务A调用了服务B&#xff0c;而服务B又调用了服务C&#xff0…...

Web3D发展趋势以及Web3D应用场景

1&#xff0c;Web3D发展趋势随着互联网的快速发展&#xff0c;Web3D技术也日渐成熟&#xff0c;未来发展趋势也值得关注。以下是Web3D未来发展趋势的七个方面&#xff1a;可视化和可交互性的增强&#xff1a;Web3D可以为三维数据提供可视化和可交互性的增强&#xff0c;将极大地…...

2023-3-4 刷题情况

按位与为零的三元组 题目描述 给你一个整数数组 nums &#xff0c;返回其中 按位与三元组 的数目。 按位与三元组 是由下标 (i, j, k) 组成的三元组&#xff0c;并满足下述全部条件&#xff1a; 0 < i < nums.length 0 < j < nums.length 0 < k < nums.l…...

前端面试总结

1.引言 最近参加了大量的招聘会&#xff0c;投递了大量的简历&#xff0c;整整体会了从“随便找个厂上一下”——“还是的找个大厂”——“没人要”——“急了急了,海投一波”——“工资有点尬”——“海投中…”。简单说一下自己的一些感受吧&#xff0c;现在的前端属实有点尴…...

Geospatial Data Science (6): Spatial clustering

Geospatial Data Science (6): Spatial clustering 1.Clustering, spatial clustering, and geodemographics 本节涉及空间观测的统计聚类。许多问题和主题都是复杂的现象,涉及多个维度,难以归纳为一个单一的变量。在统计学术语中,我们把这一类问题称为多变量,而不是在…...

蚁群算法优化问题

%%%%%%%%%%%%蚁群算法解决 TSP 问题%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%% clear all; %清除所有变量 close all; %清图 clc; %清屏 m 50; %蚂蚁个数 Alpha 1; %信息素重要程度参数 Beta 5; %启发式因子重要程度参数 Rho 0.1; %信息素蒸发系数 G 20…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...