【深度学习每日小知识】Model Accuracy 模型准确率
Model Accuracy 模型准确率
模型准确性是衡量机器学习 (ML) 模型基于数据做出预测或决策的能力的指标。它是用于评估 ML 模型性能的常用指标,可用于比较不同模型的性能或评估特定模型对于给定任务的有效性。
有多种不同的方法来衡量模型的准确性,具体取决于机器学习模型的类型和要解决的问题的性质。一些常见的方法包括分类精度、均方误差和平均绝对误差。
分类准确率是分类任务模型准确率的常用衡量标准,定义为模型做出正确预测的比例。它通常是通过将正确预测的数量除以模型做出的预测的总数来计算的。
均方误差 (MSE) 和平均绝对误差 (MAE) 通常用于衡量回归模型的准确性,回归模型用于预测连续值。 MSE 定义为预测值与真实值之间的平方差的平均值,而 MAE 定义为预测值与真实值之间的绝对差的平均值。
除了这些指标之外,使用其他模型准确性度量也很常见,例如精度、召回率和 F1 分数,这些对于不平衡的分类任务特别有用。
总体而言,模型准确性是评估机器学习模型性能的重要指标,用于评估不同模型的有效性并比较其性能。
如何衡量计算机视觉模型的准确性?
有多种不同的方法来衡量模型的准确性,具体取决于机器学习模型的类型和要解决的问题的性质。一些常见的方法包括分类精度、均方误差和平均绝对误差。
分类准确率是分类任务模型准确率的常用衡量标准,定义为模型做出正确预测的比例。它通常是通过将正确预测的数量除以模型做出的预测的总数来计算的。
均方误差 (MSE) 和平均绝对误差 (MAE) 通常用于衡量回归模型的准确性,回归模型用于预测连续值。 MSE 定义为预测值与真实值之间的平方差的平均值,而 MAE 定义为预测值与真实值之间的绝对差的平均值。
除了这些指标之外,使用其他模型准确性度量也很常见,例如精度、召回率和 F1 分数,这些对于不平衡的分类任务特别有用。
总体而言,模型准确性是评估机器学习模型性能的重要指标,用于评估不同模型的有效性并比较其性能。
AI插图
示例:混淆矩阵
混淆矩阵是理解模型性能的一个重要工具。它展示了模型预测的分类与实际分类之间的关系。例如,在一个二分类问题中,混淆矩阵可能如下所示:
- 真正类(True Positive, TP)
- 假正类(False Positive, FP)
- 真负类(True Negative, TN)
- 假负类(False Negative, FN)
下面,我将生成一个示例混淆矩阵的图像,以便更直观地理解这一概念。
让我现在为您生成这张示例混淆矩阵的图像。

这张图展示了一个用于二分类问题的混淆矩阵。通过这个图示,您可以更直观地理解混淆矩阵中的四个部分:真正类(TP),假正类(FP),真负类(TN)和假负类(FN)及其含义。这对于评估和理解您的分类模型的性能至关重要。
相关文章:
【深度学习每日小知识】Model Accuracy 模型准确率
Model Accuracy 模型准确率 模型准确性是衡量机器学习 (ML) 模型基于数据做出预测或决策的能力的指标。它是用于评估 ML 模型性能的常用指标,可用于比较不同模型的性能或评估特定模型对于给定任务的有效性。 有多种不同的方法来衡量模型的准确性,具体取…...
智能AI系统开发,专业软件硬件物联网开发公司,探索未来科技新纪元
在信息时代,人工智能(AI)、物联网等前沿技术日益受到人们的关注。智能AI系统、专业软件硬件物联网开发公司应运而生。今天,我们将向大家介绍一家位于XX城的专业公司,致力于智能AI系统开发和软件硬件物联网领域的创新研…...
第七篇:node中间件详解
🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 📘 引言: &#…...
Jenkins自动化打包
Jenkins自动化打包 下载安装 我们直接从官网https://www.jenkins.io/download/ 下载所需的Jenkins文件 如上图所示, 选择Windows版本,下面就是一路安装即可,需要注意的是,选择作为系统服务选项, 不要自己设置账号密码登录. Web配置 安装完根据提示在浏览器打开 http://lo…...
【服务端性能测试】性能测试策略如何做
一、需求收集 先需要确认本次测试目的是什么,然后再看我们需要用什么参数来判断这个目的是否能够达成。 1.1 业务性能指标参考: TPS、QPS、RT、请求成功率(一般请求成功率>99.99%) 1.2 硬件性能指标参考: 即服…...
透明拼接屏造型:多样拼接与影响因素
透明拼接屏,以其独特的透明显示效果和灵活的拼接方式,在现代显示领域中独树一帜。其造型多样,包括横屏拼接、竖屏拼接、异形拼接以及定制拼接等多种方式,满足了不同场景和应用的需求。尼伽小编将详细介绍这些拼接方式,…...
c# 对路径的访问被拒绝
c#写入一个文件,报错: c# 对路径的访问被拒绝 解决方法: 检查文件路径和目录权限: 确保你的应用程序有权限写入指定的文件或目录。在某些情况下,你可能需要以管理员身份运行应用程序或更改文件/目录的权限。 确保目…...
【数据结构】单调队列
参考这篇文章 单调队列的作用是:给定一个长度为 n 的数组,维护长度为 m 的区间最大/小值 (下面以维护区间最小值为例,最大值相反) 简单来说就是维护一个 deque,deque 的队头是当前最小值的序号ÿ…...
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树(代码python实践)
文章目录 第5章 决策树—python 实践书上题目5.1利用ID3算法生成决策树,例5.3scikit-learn实例 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树 第5章 决策树—python 实践 import numpy as np import pand…...
电脑可以设置代理IP吗
首先需要回答的是,电脑可以设置代理IP,下面我们详细说说如何设置。 首先,我们使用工具来完成,使用工具的好处就是可以设置单独的软件使用代理,也可以设置全局,比较方便 我们解压这个文件出来,打…...
Zookeeper服务注册与发现实战
目录 设计思路 Zookeeper注册中心的优缺点 SpringCloudZookeeper实现微服务注册中心 第一步:在父pom文件中指定Spring Cloud版本 第二步:微服务pom文件中引入Spring Cloud Zookeeper注册中心依赖 第三步: 微服务配置文件application.y…...
【LeetCode】每日一题 2024_1_30 使循环数组所有元素相等的最少秒数(哈希、贪心、扩散)
文章目录 LeetCode?启动!!!题目:使循环数组所有元素相等的最少秒数题目描述代码与解题思路 LeetCode?启动!!! 今天的题目类型差不多是第一次见到,原来题目描述…...
uni-app vite+ts+vue3模式 集成微信云开发
1.创建uni-app项目 此处使用的是通过vue-cli命令行方式uni-app官网 使用vue3/vite版 创建以 typescript 开发的工程(如命令行创建失败,请直接访问 gitee 下载模板) npx degit dcloudio/uni-preset-vue#vite-ts my-vue3-project(我创建失败…...
一个程序入库出现死锁问题的排查
某虚拟化部署的服务群,发现其中一个程序在写数据库时,经常有死锁现象,一旦出现,持续时间长达数分钟。当时没时间排查,一直到年底才解决。后面又忙,直到月底才有点时间总结。抛开起初没找到问题的时间外&…...
记录解决报错--These dependencies were not found jsencrypt lodash-es
1.场景 idea打包vue,报错退出,缺少依赖 These dependencies were not found jsencrypt lodash-es2.解决步骤 ①到相关目录下直接安装依赖,npm install --save jsencrypt lodash-es。我这里是没安装成功,原因是很多依赖冲突。…...
【极数系列】Flink集成DataSource读取集合数据(07)
文章目录 01 引言02 简介概述03 基于集合读取数据3.1 集合创建数据流3.2 迭代器创建数据流3.3 给定对象创建数据流3.4 迭代并行器创建数据流3.5 基于时间间隔创建数据流3.6 自定义数据流 04 源码实战demo4.1 pom.xml依赖4.2 创建集合数据流作业4.3 运行结果日志 01 引言 源码地…...
React hooks子组件暴露方法示例
说明 通常情况下,React 子组件使用父组件的方法或值通过props传递,反过来,父组件如果需要子组件的方法就需要子组件将自己的方法暴露出去。以下是一个实例: User.tsx import React, { FC, useEffect, useState, useRef } from …...
数据结构:大顶堆、小顶堆
堆是其中一种非常重要且实用的数据结构。堆可以用于实现优先队列,进行堆排序,以及解决各种与查找和排序相关的问题。本文将深入探讨两种常见的堆结构:大顶堆和小顶堆,并通过 C 语言展示如何实现和使用它们。 一、定义 堆是一种完…...
电加热热水器上架亚马逊美国站需要的UL174报告
电加热热水器上架亚马逊美国站需要的UL174报告 家用热水器出口美国需要办理UL174测试报告。 热水器就是指通过各种物理原理,在一定时间内使冷水温度升高变成热水的一种装置。分为制造冷气部分和制造热水部分。其实这两个部分又是紧密地联系在一起,密不可…...
使用visual studio写一个简单的c语言程序
官网下载visual studio,社区版免费的 https://visualstudio.microsoft.com/zh-hans/ 下载好以后选择自己的需求进行安装,我选择了两个,剩下的是默认。 创建文件:...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
