蚁群算法优化最优值
%%%%%%%%%%%%%%蚁群算法求函数极值%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
m = 20; %蚂蚁个数
G = 500; %最大迭代次数
Rho = 0.9; %信息素蒸发系数
P0 = 0.2; %转移概率常数
XMAX = 5; %搜索变量 x 最大值
XMIN = -5; %搜索变量 x 最小值
YMAX = 5; %搜索变量 y 最大值
YMIN = -5; %搜索变量 y 最小值
%%%%%%%%%%%%%随机设置蚂蚁初始位置%%%%%%%%%%%%%%%%
for i = 1:m
X(i,1) = (XMIN+(XMAX-XMIN)*rand);
X(i,2) = (YMIN+(YMAX-YMIN)*rand);
Tau(i) = func(X(i,1),X(i,2));
end
step = 0.1; %局部搜索步长
for NC = 1:G
lamda = 1/NC;
[Tau_best,BestIndex] = min(Tau);
%%%%%%%%%%%%%计算状态转移概率%%%%%%%%%%%%%%%
for i = 1:m
P(NC,i) = (Tau(BestIndex)-Tau(i))/Tau(BestIndex);
end
%%%%%%%%%%%%%%%%位置更新%%%%%%%%%%%%%%%%%
for i = 1:m
%%%%%%%%%%%%局部搜索%%%%%%%%%%%%%%%%%
if P(NC,i) < P0
temp1 = X(i,1)+(2*rand-1)*step*lamda;
temp2 = X(i,2)+(2*rand-1)*step*lamda;
else
%%%%%%%%%%%%全局搜索%%%%%%%%%%%%%%%%
temp1 = X(i,1)+(XMAX-XMIN)*(rand-0.5);
temp2 = X(i,2)+(YMAX-YMIN)*(rand-0.5);
end
%%%%%%%%%%%%%%%%边界处理%%%%%%%%%%%%%%%
if temp1 < XMIN
temp1 = XMIN;
end
if temp1 > XMAX
temp1 = XMAX;
end
if temp2 < YMIN
temp2 = YMIN;
end
if temp2 > YMAX
temp2 = YMAX;
end
%%%%%%%%%%%%%%%判断蚂蚁是否移动%%%%%%%%%%%
if func(temp1,temp2) < func(X(i,1),X(i,2))
X(i,1) = temp1;
X(i,2) = temp2;
end
end
%%%%%%%%%%%%%%%%%更新信息素%%%%%%%%%%%%%%%
for i = 1:m
Tau(i) = (1-Rho)*Tau(i)+func(X(i,1),X(i,2));
end
[value,index] = min(Tau);
trace(NC) = func(X(index,1),X(index,2));
end
[min_value,min_index] = min(Tau);
minX = X(min_index,1); %最优变量
minY = X(min_index,2); %最优变量
minValue = func(X(min_index,1),X(min_index,2)); %最优值
figure
plot(trace)
xlabel('搜索次数');
ylabel('适应度值');
title('适应度进化曲线')
%%%%%%%%%%%%%%%%%适应度函数%%%%%%%%%%%%%%%%
function value = func(x,y)
value = 20*(x^2-y^2)^2-(1-y)^2-3*(1+y)^2+0.3;
end
相关文章:
蚁群算法优化最优值
%%%%%%%%%%%%%%蚁群算法求函数极值%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%% clear all; %清除所有变量 close all; %清图 clc; %清屏 m 20; %蚂蚁个数 G 500; %最大迭代次数 Rho 0.9; %信息素蒸发系数 P0 0.2; %转移概率常数 XMAX 5; %搜索变量 x…...
Docker镜像的内部机制
Docker镜像的内部机制 镜像就是一个打包文件,里面包含了应用程序还有它运行所依赖的环境,例如文件系统、环境变量、配置参数等等。 环境变量、配置参数这些东西还是比较简单的,随便用一个 manifest 清单就可以管理,真正麻烦的是文…...
每日的时间安排规划
14:23 2023年3月4日星期六 开始 现在我要做一套试卷。模拟6级考试。 现在是: 16:22 2023年3月4日星期六。 做完了线上的试卷! 发现我真的是不太聪明的样子! 明明买的有历年真题,做真题就行了,还要做它们出的模拟的…...
【C++】类和对象——六大默认成员函数
🏖️作者:malloc不出对象 ⛺专栏:C的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录前言一、类的6个默认成员函数二、构造…...
远程debug被arthas watch了的idea
开发工具idea端(2021.2.1) 远程调试 被 应用了 修改的arthas端 的 鸡idea端(2022.3.2) A. 鸡idea端 鸡idea: “D:\IntelliJ IDEA 2022.3.2\bin\idea64.exe” 中安装有目标插件 比如 RedisNew-2022.07.24.zip 对文件 “D:\IntelliJ IDEA 2022.3.2\bin\idea64.exe.vmoptions” 新…...
Cesium实现的光柱效果
Cesium实现的光柱效果 效果展示: 可以通过拼接两个entity来实现这个效果: 全部代码; index.html <!DOCTYPE html> <html><head><meta charset...
你最爱记混的slice()和splice()
slice()方法:选取数组的一部分,并返回一个新数组 该方法不会改变原始数组,而是将截取到的元素封装到一个新数组中返回 语法:array.slice(start,end),参数的介绍如下: 语法:array.slice(start,end),参数的介绍如下: 1.start:截取开始的位置的索引,包含开始索引 2.…...
【LeetCode】剑指 Offer(15)
目录 题目:剑指 Offer 32 - II. 从上到下打印二叉树 II - 力扣(Leetcode) 题目的接口: 解题思路: 代码: 过啦!!! 题目:剑指 Offer 32 - III. 从上到下打…...
【刷题笔记】之二分查找(搜索插入位置。在排序数组中查找元素的第一个和最后一个位置、x的平方根、有效的完全平方数)
1. 二分查找题目链接 704. 二分查找 - 力扣(LeetCode)给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -…...
一起Talk Android吧(第五百一十五回:绘制向外扩散的水波纹)
文章目录整体思路实现方法示例代码各位看官们大家好,上一回中咱们说的例子是"Java中的进制转换",这一回中咱们说的例子是"绘制向外扩散的水波纹"。闲话休提,言归正转, 让我们一起Talk Android吧! 整体思路 …...
基于粒子群改进的支持向量机SVM的情感分类识别,pso-svm情感分类识别
目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 Libsvm工具箱详解 简介 参数说明 易错及常见问题 SVM应用实例,基于SVM的情感分类预测 代码 结果分析 展望 支持向量机SVM的详细原理 SVM的定义 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型…...
【python中的列表和元组】
文章目录前言一、列表及其使用1.列表的特点2. 列表的使用方法二、元组及其特点1.元组的类型是tuple1.元组的查找操作2. 计算元组某个元素出现的次数3.统计元组内元素的个数总结前言 本文着重介绍python中的列表和元组以及列表和元组之间的区别 一、列表及其使用 1.列表的特点…...
世界顶级五大女程序媛,不仅技术强还都是美女
文章目录1.计算机程序创始人:勒芙蕾丝伯爵夫人2.首位获得图灵奖的女性:法兰艾伦3.谷歌经典首页守护神:玛丽莎梅耶尔4.COBOL之母:葛丽丝穆雷霍普5.史上最强游戏程序媛-余国荔说起程序员的话,人们想到的都会是哪些理工科…...
Linux- 系统随你玩之--文件管理-双生姐妹花
文章目录1、前言2、文件管理-双生姐妹花2.1、 df2.1.1、 df 语法2.1.1 、常用参数2.2、 du2.2.1、du 语法2.1.1、 常用参数2.3、双生姐妹花区别2.3.1、 查看文件统计 的计算方式不同2.3.2 、删除文件情况下统计结果 不同2.3.3 、针对双生姐妹花区别 结语3、双生姐妹花实操3.1 、…...
18、多维图形绘制
目录 一、三维图形绘制 (一)曲线图绘制plot3() (二)网格图绘制 mesh() (三)曲面图绘制 surf() (四)光照模型 surfl() (五)等值线图(等高线图)绘制 cont…...
【C++】30h速成C++从入门到精通(STL介绍、string类)
STL简介什么是STLSTL(standard template libaray-标准模板库):是C标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架。STL的版本原始版本Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版本&…...
PMP是什么意思?适合哪些人学呢?
PMP简而言之,就是提高项目管理理论基础和实践能力的考试。 官方一点的说明呢,就是:PMP证书全称为Project Management Professional,也叫项目管理专业人士资格认证。 PMP证书由美国项目管理协会(PMI)发起,是严格评估项…...
【SpringBoot 事务不回滚?怎么解决?】
SpringBoot 事务不回滚可能有多种原因,下面列举一些常见的原因和对应的解决方法: 异常被捕获处理了 如果方法中抛出了异常,但是在方法中被捕获并处理了,那么事务不会回滚。解决方法是让异常继续抛出,或者使用 Transa…...
软件研发管理经验总结 - 技术管理
软件研发管理经验总结 - 技术管理 技术管理主要负责有技术团队建设、管理团队成员技术相关事务、帮助团队成员成长、负责团队成员交付的代码质量、以及负责产品技术方向、以及产品相关前沿技术调研;管理团队成员技术相关事务有代码Review、故障率跟踪、分析及根据分…...
项目实战典型案例19——临时解决方案和最终解决方案
临时解决方案和最终解决方案一:背景介绍二:思路&方案四:总结五:升华一:背景介绍 本篇博客是对项目开发中出现的临时解决方案和最终解决方案进行的总结和改进。目的是将经历转变为自己的经验。通过博客的方式分享给…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
二叉树-144.二叉树的前序遍历-力扣(LeetCode)
一、题目解析 对于递归方法的前序遍历十分简单,但对于一位合格的程序猿而言,需要掌握将递归转化为非递归的能力,毕竟递归调用的时候会调用大量的栈帧,存在栈溢出风险。 二、算法原理 递归调用本质是系统建立栈帧,而非…...
