当前位置: 首页 > news >正文

现代卷积神经网络(AlexNet)

专栏:神经网络复现目录


本章介绍的是现代神经网络的结构和复现,包括深度卷积神经网络(AlexNet),VGG,NiN,GoogleNet,残差网络(ResNet),稠密连接网络(DenseNet)。
文章部分文字和代码来自《动手学深度学习》

文章目录

  • 深度卷积神经网络(AlexNet)
    • 学习表征
    • AlexNet 架构
    • 模型设计
    • 使用模型进行Fashion-MNIST分类
      • 数据集
      • 超参数、优化器,损失函数
      • 训练
      • 测试
      • 结果


深度卷积神经网络(AlexNet)

学习表征

学习表征(Representation Learning)是机器学习中一个重要的研究领域,旨在通过学习数据的表征,从而更好地完成各种任务。在传统机器学习中,通常需要手工设计特征,然后将这些特征输入到模型中进行训练。这种方法需要具有专业领域知识的人员手工设计特征,费时费力,且很难设计出完美的特征。

而学习表征则是通过机器自动学习数据的特征表示,省去了手动设计特征的过程,提高了效率和性能。学习表征的方法可以分为无监督学习和监督学习两种。其中,无监督学习是指在没有标注信息的情况下学习数据的表征,比如自编码器、受限玻尔兹曼机、深度信念网络等;监督学习则是利用带有标注信息的数据进行学习,比如卷积神经网络、递归神经网络等。

通过学习表征,可以更好地完成各种任务,如图像分类、目标检测、语音识别等。同时,学习表征也是深度学习领域的一个重要研究方向,有助于深入理解深度神经网络的工作原理和特性。

有趣的是,在网络的最底层,模型学习到了一些类似于传统滤波器的特征抽取器。 下图从AlexNet论文 (Krizhevsky et al., 2012)复制的,描述了底层图像特征。
在这里插入图片描述
AlexNet的更高层建立在这些底层表示的基础上,以表示更大的特征,如眼睛、鼻子、草叶等等。而更高的层可以检测整个物体,如人、飞机、狗或飞盘。最终的隐藏神经元可以学习图像的综合表示,从而使属于不同类别的数据易于区分。尽管一直有一群执着的研究者不断钻研,试图学习视觉数据的逐级表征,然而很长一段时间里这些尝试都未有突破。深度卷积神经网络的突破出现在2012年。突破可归因于两个关键因素。

AlexNet 架构

若图像大小为A ×\times× A,卷积核大小为D ×\times× D,扩充边缘padding=B,步长stride=C
则卷积后的特征图FeatureMap大小为(A-D+B*2+C)/ C

值得注意的一点:原图输入224 × 224,实际上进行了随机裁剪,实际大小为227 × 227。
在这里插入图片描述

  1. 卷积层C1
    C1的基本结构为:卷积–>ReLU–>池化
    卷积:输入227 × 227 × 3,96个11×11×3的卷积核,不扩充边缘padding = 0,步长stride = 4,因此其FeatureMap大小为(227-11+0×2+4)/4 = 55,即55×55×96;
    激活函数:ReLU;
    池化:池化核大小3 × 3,不扩充边缘padding = 0,步长stride = 2,因此其FeatureMap输出大小为(55-3+0×2+2)/2=27, 即C1输出为27×27×96(此处未将输出分到两个GPU中,若按照论文将分成两组,每组为27×27×48)
  2. 卷积层C2
    C2的基本结构为:卷积–>ReLU–>池化
    卷积:输入27×27×96,256个5×5×96的卷积核,扩充边缘padding = 2, 步长stride = 1,因此其FeatureMap大小为(27-5+2×2+1)/1 = 27,即27×27×256;
    激活函数:ReLU;
    池化:池化核大小3 × 3,不扩充边缘padding = 0,步长stride = 2,因此其FeatureMap输出大小为(27-3+0+2)/2=13, 即C2输出为13×13×256(此处未将输出分到两个GPU中,若按照论文将分成两组,每组为13×13×128);
  3. 卷积层C3
    C3的基本结构为:卷积–>ReLU。注意一点:此层没有进行MaxPooling操作。
    卷积:输入13×13×256,384个3×3×256的卷积核, 扩充边缘padding = 1,步长stride = 1,因此其FeatureMap大小为(13-3+1×2+1)/1 = 13,即13×13×384;
    激活函数:ReLU,即C3输出为13×13×384(此处未将输出分到两个GPU中,若按照论文将分成两组,每组为13×13×192)
  4. 卷积层C4
    C4的基本结构为:卷积–>ReLU。注意一点:此层也没有进行MaxPooling操作。
    卷积:输入13×13×384,384个3×3×384的卷积核, 扩充边缘padding = 1,步长stride = 1,因此其FeatureMap大小为(13-3+1×2+1)/1 = 13,即13×13×384;
    激活函数:ReLU,即C4输出为13×13×384(此处未将输出分到两个GPU中,若按照论文将分成两组,每组为13×13×192);
  5. 卷积层C5
    C5的基本结构为:卷积–>ReLU–>池化
    卷积:输入13×13×384,256个3×3×384的卷积核,扩充边缘padding = 1,步长stride = 1,因此其FeatureMap大小为(13-3+1×2+1)/1 = 13,即13×13×256;
    激活函数:ReLU;
    池化:池化核大小3 × 3, 扩充边缘padding = 0,步长stride = 2,因此其FeatureMap输出大小为(13-3+0×2+2)/2=6, 即C5输出为6×6×256(此处未将输出分到两个GPU中,若按照论文将分成两组,每组为6×6×128);
  6. 全连接层FC6
    FC6的基本结构为:全连接–>>ReLU–>Dropout
    全连接:此层的全连接实际上是通过卷积进行的,输入6×6×256,4096个6×6×256的卷积核,扩充边缘padding = 0, 步长stride = 1, 因此其FeatureMap大小为(6-6+0×2+1)/1 = 1,即1×1×4096;
    激活函数:ReLU;
    Dropout:全连接层中去掉了一些神经节点,达到防止过拟合,FC6输出为1×1×4096;
  7. 全连接层FC7
    FC7的基本结构为:全连接–>>ReLU–>Dropout
    全连接:此层的全连接,输入1×1×4096;
    激活函数:ReLU;
    Dropout:全连接层中去掉了一些神经节点,达到防止过拟合,FC7输出为1×1×4096;
  8. 全连接层FC8
    FC8的基本结构为:全连接–>>softmax
    全连接:此层的全连接,输入1×1×4096;
    softmax:softmax为1000,FC8输出为1×1×1000;

模型设计

class AlexNet(nn.Module):def __init__(self):super(AlexNet,self).__init__()#卷积层self.conv = nn.Sequential(#C1nn.Conv2d(in_channels=1,out_channels=96,kernel_size=11,padding=0,stride=4),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),#C2nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,padding=2,stride=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),#C3nn.Conv2d(in_channels=256,out_channels=384,kernel_size=3,padding=1,stride=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),#C4nn.Conv2d(in_channels=384,out_channels=384,kernel_size=3,padding=1,stride=1),nn.ReLU(),#C5nn.Conv2d(in_channels=384,out_channels=256,kernel_size=3,padding=1,stride=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Flatten(),#拉直层)#全连接层self.fc=nn.Sequential(#FC6nn.Linear(256*5*5,4096),nn.ReLU(),nn.Dropout(0.5),#FC7nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096,10),)def forward(self,img):feature=self.conv(img)output=self.fc(feature)return outputdef layers(self):return [self.conv, self.fc]

使用模型进行Fashion-MNIST分类

数据集

def get_dataloader_workers():  #@save"""使用4个进程来读取数据"""return 4def load_data_fashion_mnist(batch_size, resize=None):  #@save"""下载Fashion-MNIST数据集,然后将其加载到内存中"""trans = [transforms.ToTensor()]if resize:trans.insert(0, transforms.Resize(resize))trans = transforms.Compose(trans)mnist_train = torchvision.datasets.FashionMNIST(root="../data", train=True, transform=trans, download=True)mnist_test = torchvision.datasets.FashionMNIST(root="../data", train=False, transform=trans, download=True)return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))

超参数、优化器,损失函数

#超参数,优化器和损失函数
batch_size = 128
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224)
lr, num_epochs = 0.01, 10
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()

训练


def train(net, train_iter, test_iter, num_epochs, lr, device):def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数net.train()train_step = 0total_loss = 0.0#总损失total_correct = 0#总正确数total_examples = 0#总训练数for i, (X, y) in enumerate(train_iter):optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)l.backward()optimizer.step()total_loss += l.item()total_correct += (y_hat.argmax(dim=1) == y).sum().item()total_examples += y.size(0)train_step+=1if(train_step%50==0):#每训练一百组输出一次损失print("第{}轮的第{}次训练的loss:{}".format((epoch+1),train_step,l.item()))train(net,train_iter,test_iter,num_epochs,lr,device)

测试

from d2l import torch as d2l
def predict(net, test_iter, n=6):  #@savefor X, y in test_iter:X, y = X.to('cuda'), y.to('cuda')breaktrues = d2l.get_fashion_mnist_labels(y)preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))titles = [true +'\n' + pred for true, pred in zip(trues, preds)]d2l.show_images(X[0:n].cpu().reshape((n, 224, 224)), 1, n, titles=titles[0:n])
predict(net, test_iter)

结果

在这里插入图片描述

相关文章:

现代卷积神经网络(AlexNet)

专栏:神经网络复现目录 本章介绍的是现代神经网络的结构和复现,包括深度卷积神经网络(AlexNet),VGG,NiN,GoogleNet,残差网络(ResNet),稠密连接网络…...

单向非循环链表

1、顺序表遗留问题 1. 中间/头部的插入删除,时间复杂度为O(N) 2. 增容需要申请新空间,使用malloc、realloc等函数拷贝数据,释放旧空间。会有不小的消耗。 3. 当我们以2倍速度增容时,势必会有一定的空间浪费。例如当前容量为100&a…...

Vue2的基本内容(一)

目录 一、插值语法 二、数据绑定 1.单向数据绑定 2.双向数据绑定 三、事件处理 1.绑定监听 2.事件修饰符 四、计算属性computed和监视属性watch 1.计算属性-computed 2.监视属性-watch (1)通过 watch 监听 msg 数据的变化 (2&a…...

蚁群算法优化最优值

%%%%%%%%%%%%%%蚁群算法求函数极值%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%%%%% clear all; %清除所有变量 close all; %清图 clc; %清屏 m 20; %蚂蚁个数 G 500; %最大迭代次数 Rho 0.9; %信息素蒸发系数 P0 0.2; %转移概率常数 XMAX 5; %搜索变量 x…...

Docker镜像的内部机制

Docker镜像的内部机制 镜像就是一个打包文件,里面包含了应用程序还有它运行所依赖的环境,例如文件系统、环境变量、配置参数等等。 环境变量、配置参数这些东西还是比较简单的,随便用一个 manifest 清单就可以管理,真正麻烦的是文…...

每日的时间安排规划

14:23 2023年3月4日星期六 开始 现在我要做一套试卷。模拟6级考试。 现在是: 16:22 2023年3月4日星期六。 做完了线上的试卷! 发现我真的是不太聪明的样子! 明明买的有历年真题,做真题就行了,还要做它们出的模拟的…...

【C++】类和对象——六大默认成员函数

🏖️作者:malloc不出对象 ⛺专栏:C的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录前言一、类的6个默认成员函数二、构造…...

远程debug被arthas watch了的idea

开发工具idea端(2021.2.1) 远程调试 被 应用了 修改的arthas端 的 鸡idea端(2022.3.2) A. 鸡idea端 鸡idea: “D:\IntelliJ IDEA 2022.3.2\bin\idea64.exe” 中安装有目标插件 比如 RedisNew-2022.07.24.zip 对文件 “D:\IntelliJ IDEA 2022.3.2\bin\idea64.exe.vmoptions” 新…...

Cesium实现的光柱效果

Cesium实现的光柱效果 效果展示: 可以通过拼接两个entity来实现这个效果: 全部代码; index.html <!DOCTYPE html> <html><head><meta charset...

你最爱记混的slice()和splice()

slice()方法:选取数组的一部分,并返回一个新数组 该方法不会改变原始数组,而是将截取到的元素封装到一个新数组中返回 语法:array.slice(start,end),参数的介绍如下: 语法:array.slice(start,end),参数的介绍如下: 1.start:截取开始的位置的索引,包含开始索引 2.…...

【LeetCode】剑指 Offer(15)

目录 题目&#xff1a;剑指 Offer 32 - II. 从上到下打印二叉树 II - 力扣&#xff08;Leetcode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 题目&#xff1a;剑指 Offer 32 - III. 从上到下打…...

【刷题笔记】之二分查找(搜索插入位置。在排序数组中查找元素的第一个和最后一个位置、x的平方根、有效的完全平方数)

1. 二分查找题目链接 704. 二分查找 - 力扣&#xff08;LeetCode&#xff09;给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返回下标&#xff0c;否则返回 -…...

一起Talk Android吧(第五百一十五回:绘制向外扩散的水波纹)

文章目录整体思路实现方法示例代码各位看官们大家好&#xff0c;上一回中咱们说的例子是"Java中的进制转换",这一回中咱们说的例子是"绘制向外扩散的水波纹"。闲话休提&#xff0c;言归正转&#xff0c; 让我们一起Talk Android吧&#xff01; 整体思路 …...

基于粒子群改进的支持向量机SVM的情感分类识别,pso-svm情感分类识别

目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 Libsvm工具箱详解 简介 参数说明 易错及常见问题 SVM应用实例,基于SVM的情感分类预测 代码 结果分析 展望 支持向量机SVM的详细原理 SVM的定义 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型…...

【python中的列表和元组】

文章目录前言一、列表及其使用1.列表的特点2. 列表的使用方法二、元组及其特点1.元组的类型是tuple1.元组的查找操作2. 计算元组某个元素出现的次数3.统计元组内元素的个数总结前言 本文着重介绍python中的列表和元组以及列表和元组之间的区别 一、列表及其使用 1.列表的特点…...

世界顶级五大女程序媛,不仅技术强还都是美女

文章目录1.计算机程序创始人&#xff1a;勒芙蕾丝伯爵夫人2.首位获得图灵奖的女性&#xff1a;法兰艾伦3.谷歌经典首页守护神&#xff1a;玛丽莎梅耶尔4.COBOL之母&#xff1a;葛丽丝穆雷霍普5.史上最强游戏程序媛-余国荔说起程序员的话&#xff0c;人们想到的都会是哪些理工科…...

Linux- 系统随你玩之--文件管理-双生姐妹花

文章目录1、前言2、文件管理-双生姐妹花2.1、 df2.1.1、 df 语法2.1.1 、常用参数2.2、 du2.2.1、du 语法2.1.1、 常用参数2.3、双生姐妹花区别2.3.1、 查看文件统计 的计算方式不同2.3.2 、删除文件情况下统计结果 不同2.3.3 、针对双生姐妹花区别 结语3、双生姐妹花实操3.1 、…...

18、多维图形绘制

目录 一、三维图形绘制 &#xff08;一&#xff09;曲线图绘制plot3() &#xff08;二&#xff09;网格图绘制 mesh() &#xff08;三&#xff09;曲面图绘制 surf() &#xff08;四&#xff09;光照模型 surfl() &#xff08;五&#xff09;等值线图(等高线图)绘制 cont…...

【C++】30h速成C++从入门到精通(STL介绍、string类)

STL简介什么是STLSTL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的组件库&#xff0c;而且是一个包罗数据结构与算法的软件框架。STL的版本原始版本Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版本&…...

PMP是什么意思?适合哪些人学呢?

PMP简而言之&#xff0c;就是提高项目管理理论基础和实践能力的考试。 官方一点的说明呢&#xff0c;就是&#xff1a;PMP证书全称为Project Management Professional&#xff0c;也叫项目管理专业人士资格认证。 PMP证书由美国项目管理协会(PMI)发起&#xff0c;是严格评估项…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...