当前位置: 首页 > news >正文

Python处理图片生成天际线(2024.1.29)

1、天际线简介

        天际线SkyLine)顾名思义就是天空与地面的边界线,人站在不同的高度,会看到不同的景色和地平线,天空与地面建筑物分离的标记线,不得不说,每天抬头仰望天空,相信大家都可以看到,它的的确确客观存在,美丽值得欣赏。

2、Python代码

#-*- coding:utf-8 -*-
import sys
from os.path import exists
import cv2
import numpy as npdef getImage(height, width, channels):image = np.zeros([height, width, 3], np.uint8) # 三通道顺序是BGR# 三层循环逐个修改像素点for row in range(height):for col in range(width):for c in range(channels):image[row, col, c] = 0return imagedef isWhite(pixel_value, threshold): #阈值可以取10、20、30、50、100res = Falseif pixel_value[0] > threshold and pixel_value[1] > threshold and pixel_value[2] > threshold: # 10、10、10 50、50、50 这里是天空和地面楼山的分界线,需要调参res = Truereturn resdef isPureWhite(pixel_value):res = Falseif pixel_value[0] == 255 and pixel_value[1] == 255 and pixel_value[2] == 255: # >3|>3|>3 10、10、10res = Truereturn resdef getRowNumberSpecificCol(image, col):res_row = -1height, width = image.shape[0:2]if col >= 0 and col < width:for row in range(0, height):pv = image[row][col]if(pv[0] > 0 and pv[1] > 0 and pv[2] >0):res_row = rowbreakreturn res_rowdef getEnhancedEdgeImageFromEdgeImage(edge_Image):edge_SrcImage = edge_Imageheight, width = edge_SrcImage.shape[0:2]for col in range(1, width):for row in range(0, height):pixel_value = edge_SrcImage[row][col]  # 计算红绿蓝三波段的平均值if isPureWhite(pixel_value):r_last = getRowNumberSpecificCol(edge_SrcImage, col - 1)if r_last:if row > r_last:minR, maxR = r_last, rowfor k in range(minR, maxR):edge_SrcImage[k][col - 1][0] = 255edge_SrcImage[k][col - 1][1] = 255edge_SrcImage[k][col - 1][2] = 255else:minR, maxR = row, r_lastfor k in range(minR, maxR):edge_SrcImage[k][col][0] = 255edge_SrcImage[k][col][1] = 255edge_SrcImage[k][col][2] = 255# cv2.imshow("Enhanced-edge-image", edge_SrcImage)return edge_SrcImagedef getFileExtensionname(filename):res = ".png"dot_index = -1for i in range(len(filename), 0):if filename[i] == '.':dot_index = ibreakif dot_index != -1:res = filename[dot_index: len(filename)-1]return resif __name__ == '__main__':origin_pic_filename = "D:/test.png"sky_ground_threshold = 30isDownSampling = Falseif (len(sys.argv) == 1):print(sys.argv[0])origin_pic_filename = ""elif(len(sys.argv) == 2):origin_pic_filename = str(sys.argv[1])elif(len(sys.argv) == 3):origin_pic_filename = str(sys.argv[1])sky_ground_threshold = int(sys.argv[2])elif (len(sys.argv) == 4):origin_pic_filename = str(sys.argv[1])sky_ground_threshold = int(sys.argv[2])if(int(sys.argv[3]) == 1):isDownSampling = Trueif origin_pic_filename != "" and sky_ground_threshold > 0:print(("输入图片文件名为:{0}").format(origin_pic_filename))print(("天空地面分界灰度阈值为:{0}").format(sky_ground_threshold))suffix_name = getFileExtensionname(origin_pic_filename)print(("后缀名为:{0}").format(suffix_name))srcImage = cv2.imread(origin_pic_filename)inputSrcImage = srcImageif isDownSampling:inputSrcImage = cv2.pyrDown(inputSrcImage)height, width = inputSrcImage.shape[0:2]print(("高度:{0}, 宽度:{1}").format(height, width))cv2.namedWindow('downsampling-image', cv2.WINDOW_AUTOSIZE)cv2.imshow("downsampling-image", inputSrcImage)Sobelx = cv2.Sobel(inputSrcImage, cv2.CV_64F, 1, 0)Sobely = cv2.Sobel(inputSrcImage, cv2.CV_64F, 0, 1)Sobelx = cv2.convertScaleAbs(Sobelx)Sobely = cv2.convertScaleAbs(Sobely)# cv2.imshow("sobel-x-Abs", Sobelx)# cv2.imshow("sobel-y-Abs", Sobely)Sobelxy = cv2.addWeighted(Sobelx, 0.5, Sobely, 0.5, 0)cv2.namedWindow('sobel-xy', cv2.WINDOW_AUTOSIZE)cv2.imshow('sobel-xy', Sobelxy)edgeImage = getImage(height, width, 3)for col in range(0, width):for row in range(0, height):pixel_value = Sobelxy[row][col]  # 计算红绿蓝三波段的平均值if isWhite(pixel_value, sky_ground_threshold):edgeImage[row][col][0] = 255edgeImage[row][col][1] = 255edgeImage[row][col][2] = 255breakcv2.namedWindow('edge-image', cv2.WINDOW_AUTOSIZE)cv2.imshow('edge-image', edgeImage)cv2.imwrite(origin_pic_filename.replace(suffix_name, "-ZGetEdge.png"), edgeImage)enhanced_edgeImage = getEnhancedEdgeImageFromEdgeImage(edgeImage)cv2.namedWindow('enhanced-edge-image', cv2.WINDOW_AUTOSIZE)cv2.imshow('enhanced-edge-image', enhanced_edgeImage)cv2.imwrite(origin_pic_filename.replace(suffix_name, "-EnhancedEdge.png"), enhanced_edgeImage)for col in range(0, width):for row in range(0, height):pixel_value = enhanced_edgeImage[row][col]  # 计算红绿蓝三波段的平均值if isPureWhite(pixel_value):if row+2 < height:inputSrcImage[row+2][col][0] = 0inputSrcImage[row+2][col][1] = 0inputSrcImage[row+2][col][2] = 255else:inputSrcImage[row][col][0] = 0inputSrcImage[row][col][1] = 0inputSrcImage[row][col][2] = 255# inputSrcImage[row][col][0] = 0# inputSrcImage[row][col][1] = 0# inputSrcImage[row][col][2] = 255# break #最开始从每列遍历从上到下找第一个分界点就停止才用breakcv2.namedWindow('RedEdge-image', cv2.WINDOW_AUTOSIZE)cv2.imshow('RedEdge-image', inputSrcImage)cv2.imwrite(origin_pic_filename.replace(suffix_name, "-RedEdge.png"), inputSrcImage)cv2.waitKey(0)cv2.destroyAllWindows()print('Success!')cv2.waitKey()cv2.destroyAllWindows()

3、运行结果

        test.jpg下载

3.1 非下采样+边缘检测

python GetSkyLine.py test.jpg  100
原始图片
边缘点图片
边缘增强图片
sobel-xy处理后图片
downloadsampling图片
红色边缘叠加图片

3.2 下采样+边缘检测

python GetSkyLine.py test.jpg  50  1
原始图片
边缘点图片
边缘增强图片
downloadsampling图片
sobel-xy处理后图片
红色边缘叠加图片

4、小结

        在这个人世间,每个人都是独立的个体,身处浩荡洪流之中,难免身不由己,时而坚定,时而困惑,但我们还是应该永远相信美好的事情终将发生,要心怀一颗感恩的心,相信家人,相信自己,相信未来,坦然面对生活,接受平凡。

       关关难过关关过,前路漫漫亦灿灿

相关文章:

Python处理图片生成天际线(2024.1.29)

1、天际线简介 天际线&#xff08;SkyLine&#xff09;顾名思义就是天空与地面的边界线&#xff0c;人站在不同的高度&#xff0c;会看到不同的景色和地平线&#xff0c;天空与地面建筑物分离的标记线&#xff0c;不得不说&#xff0c;每天抬头仰望天空&#xff0c;相信大家都可…...

jsp服装穿搭推荐系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 游戏网上商城系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0…...

Opencv(C++)学习 之RV1126平台的OPENCV交叉编译

本文特点&#xff1a;网上已经有了很多opencv移植RV1106的文章&#xff0c;本文主要记录基于cmake-gui编译&#xff0c;碰到的报错&#xff0c;及解决报错问题的方法&#xff0c;同时简单总结一些配置项相关的知识。 一、环境&#xff1a; ubuntu18 x64 RV1126交叉编译工具链 …...

http和https区别

HTTP协议以明文方式发送内容&#xff0c;不提供任何方式的数据加密。HTTP协议不适合传输一些敏感信息&#xff0c;比如&#xff1a;信用卡号、密码等支付信息。https则是具有安全性的ssl加密传输协议。http和https使用的是完全不同的连接方式&#xff0c;用的端口也不一样&…...

富文本编辑器CKEditor4简单使用-05(开发自定义插件入门)

富文本编辑器CKEditor4简单使用-05&#xff08;开发自定义插件入门&#xff09; 1. CKEditor4插件入门1.1 关于CKEditor4插件的简单安装与使用1.2 参考 2. 开发自定义插件——当前时间插件2.1 创建插件文件目录结构2.2 编写插件原代码2.2.1 编写代码框架2.2.2 创建编辑器命令2.…...

chisel之scala 语法

Chisel新手教程之Scala语言&#xff08;1&#xff09; Value & variable Value是immutable的&#xff0c;当它被分配一个数据后&#xff0c;无法进行重新分配。用 val 表示。 Variable是mutable的&#xff0c;可以重复赋值。用 var 表示。示例如下&#xff1a; val a …...

React18构建Vite+Electron项目以及打包

一.先创建项目 cnpm create vite 选择React > JavaScript >cd react_vite > cnpm i >npm run dev 二.安装Electron依赖 指定版本相对稳定 cnpm i electron19.0.10 -D cnpm i vite-plugin-electron0.9.3 -D cnpm i electron-builder23.0.1 -D三.创建electron目录…...

Spark性能调优

Spark性能调优 executor内存不足用UNION ALL代替UNIONpersist与耗时监控用OR替换UNION ALL用JOIN替换IN executor内存不足 问题表现1&#xff1a;Container xx is running beyond physical memory limits. Current usage: xxx GB of x GB physical memory used; xx GB of x GB…...

flutter开发实战-Camera自定义相机拍照功能实现

flutter开发实战-Camera自定义相机拍照功能实现 一、前言 在项目中使用image_picker插件时候&#xff0c;在android设备上使用无法默认设置前置摄像头&#xff08;暂时不清楚什么原因&#xff09;&#xff0c;由于项目默认需要使用前置摄像头&#xff0c;所以最终采用自定义…...

LeetCode15. 三数之和

15. 三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 **注意&#xff1a;**答案中不可以包含重复…...

Docker搭建MySQL8主从复制

之前文章我们了解了面试官&#xff1a;说一说Binlog是怎么实现的&#xff0c;这里我们用Docker搭建主从复制环境。 docker安装主从MySQL 这里我们使用MySQL8.0.32版本&#xff1a; 主库配置 master.cnf //基础配置 [client] port3306 socket/var/run/mysqld/mysql.sock [m…...

【前端】日期转换

记录项目中需要处理的日期格式 默认vue2 初级版 将后端传来的数组 [2024/01/29 08:55:18, 2024/01/29 09:55:18, 2024/01/29 10:11:18]转为 [2024-01-29 08:55, 2024-01-29 09:55, 2024-01-29 10:11]方法 convertDateTimeFormat(arr) {var tempArr arr.map(function (dateT…...

Git 怎么设置用户的权限

在团队协作的软件开发中&#xff0c;对于版本控制系统Git来说&#xff0c;确保代码与数据的安全性至关重要。为了实现这一目标&#xff0c;Git提供了灵活且可定制的用户权限管理机制。下面将简单的探讨一下Git如何设置用户的权限&#xff0c;以及如何保护代码和数据。 用户身份…...

大端和小端模式介绍

介绍 “大端”和“小端”通常指的是字节序&#xff08;Byte Order&#xff09;的两种类型&#xff0c;也被称为端序&#xff08;Endianness&#xff09;。在多字节的数据类型&#xff08;如整数&#xff09;中&#xff0c;字节可以以不同的顺序存储&#xff0c;这影响了计算机…...

【vue】报错 Duplicate keys detected 解决方案

错误描述&#xff1a;Duplicate keys detected. This may cause an update error.错误直译&#xff1a;检测到重复的键。这可能会导致错误。错误原因&#xff1a;有相同父元素的多个子元素的v-for有相同的key值。 解决方法&#xff1a; return:{dataList:[{name:张三&#xf…...

机器学习_13_SVM支持向量机、感知器模型

文章目录 1 感知器模型1.1 感知器的思想1.2 感知器模型构建1.3 损失函数构建、求解 2 SVM3 线性可分SVM3.1 线性可分SVM—概念3.2 线性可分SVM —SVM 模型公式表示3.3 线性可分SVM —SVM 损失函数3.4 优化函数求解3.5 线性可分SVM—算法流程3.6 线性可分SVM—案例3.7 线性可分S…...

OpenCV学习记录——轮廓检测

文章目录 前言一、寻找、绘制轮廓二、具体应用代码 前言 寻找目标图像的轮廓并绘制出该轮廓是我们进行图像识别时常用的手段&#xff0c;轮廓是图像中连续的边界线&#xff0c;可以用于物体检测、形状分析等应用。为了获取更高的准确性&#xff0c;会先进行二值化处理&#xff…...

FreeRTOS任务挂起以及延时部分源码分析

layout: post title: “任务状态” date: 2023-7-19 15:39:08 0800 tags: FreeRTOS 任务状态 fireRTOS代码分析 任务挂起 //把一个任务挂起 void vTaskSuspend( TaskHandle_t xTaskToSuspend ) {TCB_t *pxTCB;taskENTER_CRITICAL();//进入临界区{/* 参数是NULL的时候设置为当…...

oracle数据库慢查询SQL

目录 场景&#xff1a; 环境&#xff1a; 慢SQL查询一&#xff1a; 问题一&#xff1a;办件列表查询慢 分析&#xff1a; 解决方法&#xff1a; 问题二&#xff1a;系统性卡顿 分析&#xff1a; 解决方法&#xff1a; 慢SQL查询二 扩展&#xff1a; 场景&#xff1a; 线…...

C语言搭配EasyX实现贪吃蛇小游戏

封面展示 内部展示 完整代码 #define _CRT_SECURE_NO_WARNINGS #include<easyx.h> #include<stdio.h> #include<mmsystem.h> #pragma comment (lib,"winmm.lib") #define width 40//宽有40个格子 #define height 30//长有40个格子 #define size 2…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...