当前位置: 首页 > news >正文

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?

什么是网格搜索?

网格搜索是一种参数调优的方法,它可以帮助找到最佳的模型参数。在网格搜索中,我们先指定参数的候选值范围,然后枚举所有可能的参数组合,计算每个模型的性能指标(比如准确率、精确率等)。最后,选择性能指标最优的那个参数组合作为最终的模型参数。网格搜索的名称来源于我们将参数的候选值范围表示为一个二维的参数网格。

scikit-learn GridSearchCV类介绍

API Reference — scikit-learn 1.4.0 documentation

sklearn.model_selection.GridSearchCV — scikit-learn 1.4.0 documentation 

 

重要参数说明:

  • estimator:要优化的模型对象。
  • param_grid:指定参数的候选值范围,可以是一个字典或列表。
  • scoring:性能评估方法。
  • n_jobs:并行运行的作业数。
  • refit:是否在找到最佳参数后在整个数据集上重新拟合估计器。
  • cv:交叉验证生成器或可迭代的产生训练/验证集的拆分器。
  • verbose:详细程度。
  • pre_dispatch:控制在并行执行期间调度的作业数。当调度的作业比CPU处理的作业多时,减少这个数字有助于避免内存消耗的爆炸式增长。
  • error_score:如果估算器拟合中出现错误,则分配给分数的值。。
  • return_train_score:是否返回训练评分。

重要属性说明:

  • best_estimator_:返回在交叉验证中选择的最佳估计器。
  • best_params_:返回在交叉验证中选择的最佳参数组合。
  • best_score_:返回在交叉验证中选择的最佳评分。
  • cv_results_:返回一个字典,其中包含网格搜索期间计算出的所有性能指标和参数设置的详细信息。
  • scorer_:返回用于评分的评估器。
  • n_splits_:返回交叉验证折叠数。

这些属性可以提供有关在网格搜索期间发生的事件和结果的详细信息,包括最佳模型、最佳参数和最佳评分等。您可以根据需要使用这些属性来进一步分析优化的结果。

scikit-learn GridSearchCV类使用案例

# 导入依赖包
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# 导入乳腺癌数据集,探索数据
data = load_breast_cancer()
print(data.data.shape) # 可以看到,乳腺癌数据集有569条记录,30个特征,单看维度虽然不算太高,但是样本量非常少。过拟合的情况可能存在。
print(data.data[0:5])
print(data.target.shape)
print(data.target[0:5])
print(data.feature_names)
print(data.target_names)

# 进行一次简单的建模,看看模型本身在数据集上的效果
rfc = RandomForestClassifier(n_estimators=10, random_state=90)
score_pre = cross_val_score(rfc, data.data, data.target,cv=10).mean()
score_pre
# 这里可以看到,随机森林在乳腺癌数据上的表现本就还不错,在现实数据集上,基本上不可能什么都不调就看到95%以上的准确率

# 开始按照参数对模型整体准确率的影响程度进行调参,首先调整max_depth
#调整max_depth
param_grid = {'max_depth':np.arange(1, 20, 1)}
# 一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探
# 但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够
#   更应该画出学习曲线,来观察深度对模型的影响
rfc = RandomForestClassifier(n_estimators=73,random_state=90)
GS = GridSearchCV(rfc, param_grid, cv=10)
GS.fit(data.data,data.target)
print(GS.best_params_)
print(GS.best_score_)
plt.figure(figsize=[20,5])
plt.plot(range(1,20), GS.cv_results_['mean_test_score'])
plt.ylabel('score')
plt.xlabel('max_depth')
plt.xticks(range(1,21))
plt.show()

更多详细信息,可以阅读:[Python] 什么是集成算法,什么是随机森林?随机森林分类器(RandomForestClassifier)及其使用案例-CSDN博客

的“案例二:乳腺癌数据集进行随机森林调参”。

相关文章:

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?

什么是网格搜索? 网格搜索是一种参数调优的方法,它可以帮助找到最佳的模型参数。在网格搜索中,我们先指定参数的候选值范围,然后枚举所有可能的参数组合,计算每个模型的性能指标(比如准确率、精确率等&…...

Linux-正则表达式

1.正则表达式的定义: 正则表达式通常用于判断语句中,使用字符串描述、匹配一系列符合某个规则的字符串。 正则表达式是由普通字符与元字符组成。 普通字符包括小写字母、数字、标点符号及一些其他符号。元字符是指在正则表达式中具有特殊意义的专用字符&…...

Java基础学习:System类和Static方法的实际使用

一、System类 1.在程序开发中,我们需要对这个运行的结果进行检验跟我们预判的结果是否一致,就会用到打印结果在控制台中显示出来使用到了System类。System类定义了一些和系统相关的属性和方法,它的属性和方法都是属于静态的,想使用…...

线性代数------矩阵的运算和逆矩阵

矩阵VS行列式 矩阵是一个数表,而行列式是一个具体的数; 矩阵是使用大写字母表示,行列式是使用类似绝对值的两个竖杠; 矩阵的行数可以不等于列数,但是行列式的行数等于列数; 1.矩阵的数乘就是矩阵的每个…...

Flutter 开发3:创建第一个Flutter应用

Step 1: 安装Flutter 1.1 下载Flutter SDK 首先,你需要访问Flutter官方网站下载最新的Flutter SDK。选择适合你操作系统的安装包。 $ cd ~/development $ unzip ~/Downloads/flutter_macos_2.2.3-stable.zip1.2 更新环境变量 接下来,你需要将Flutter…...

Linux中断下半部分:软中断,tasklet和工作队列

为什么要有下半部分 中断会打断其他程序,为了打断其他程序时间短,就需要中断处理程序快。执行中断处理程序后,相同中断不会触发,甚至所有中断都不能触发(设置IRQF_DISABLED,其他硬件与操作系统无法通信)中…...

Flink CEP实现10秒内连续登录失败用户分析

1、什么是CEP? Flink CEP即 Flink Complex Event Processing,是基于DataStream流式数据提供的一套复杂事件处理编程模型。你可以把他理解为基于无界流的一套正则匹配模型,即对于无界流中的各种数据(称为事件),提供一种组合匹配的…...

QSqlRelationalTableModel 关系表格模型

一、 1.1 QSqlRelationalTableModel继承自QSqlTableModel,并且对其进行了扩展,提供了对外键的支持。一个外键就是一个表中的一个字段 和 其他表中的主键字段之间的一对一的映射。例如,“studInfo”表中的departID字段对应的是“departments…...

JS和CSS实现的原生轮播图

JSCSS实现滑动轮播图 使用JS加CSS来实现的幻灯片&#xff0c;主要使用的是CSS的transform属性中的translate来实现&#xff0c;适合与用户交互的轮播图&#xff0c;展现轮播图的数量&#xff0c;用户可自由进行选择。 <!DOCTYPE html> <html lang"en">&…...

【微服务】skywalking自定义链路追踪与日志采集

目录 一、前言 二、自定义链路追踪简介 2.1 自定义链路追踪应用场景 2.2 链路追踪几个关键概念 三、skywalking 自定义链路追踪实现 3.1 环境准备 3.2 集成过程 3.2.1 导入核心依赖 3.2.2 几个常用注解 3.2.3 方法集成 3.2.4 上报追踪信息 四、skywalking 自定义日志…...

MYSQL基础问题

一&#xff0e;DBMS 是什么 DBMS&#xff08;Database Management System&#xff09;,数据库管理系统&#xff0c;是一种操纵和管理 数据库的大型软件&#xff0c;用于建立、使用和维护数据库。对数据库进行统一的管理和 控制&#xff0c;以保证数据库的安全性和完整性。 二…...

SpringBoot使用Guava实现日志脱敏(含源码)

点击下载《SpringBoot使用Guava实现日志脱敏&#xff08;含源码&#xff09;》 1. 摘要 本文将介绍如何使用Google Guava库进行日志脱敏&#xff0c;保护敏感数据的安全。我们将详细解释脱敏的必要性&#xff0c;然后介绍如何使用Guava中的Strings、Maps和CharMatcher类来进行…...

数据结构—动态查找

动态查找介绍 1. 动态查找的引入&#xff1a;当查找表以线性表的形式组织时&#xff0c;若对查找表进行插入、删除或排序操作&#xff0c;就必须移动大量的记录&#xff0c;当记录数很多时&#xff0c;这种移动的代价很大。 2. 动态查找表的设计思想&#xff1a;表结构本身是…...

Tarjan算法学习笔记

目录 无向图的割点与桥 时间戳&#xff1a; 搜索树&#xff1a; 追溯值&#xff1a; 割边判定法则&#xff1a; 割点判定法则&#xff1a; 无向图的双连通分量 定理&#xff1a; 边双连通分量(e-DCC)的求法&#xff1a; e-DCC的缩点&#xff1a; 有向图的连通性 追…...

vue 项目涉及的焦点聚焦、格式化日期、判断是否为对象或数组、判断是否为空、深拷贝、节流、防抖

焦点聚焦 import Vue from vue // 插件对象(必须有 install 方法, 才可以注入到 Vue.use 中) export default {install () {Vue.directive(fofo, {inserted (el) {el el.querySelector(input)el.focus()}})} }格式化日期格式 export const formatDate (time) > {// 将xx…...

软件工程知识梳理6-运行和维护

软件维护需要的工作量很大&#xff0c;大型软件的维护成本高达开发成本的4倍左右。所以&#xff0c;软件工程的主要目的就是要提高软件的可维护性&#xff0c;减少软件维护所需要的工作量&#xff0c;降低软件系统的总成本。 定义&#xff1a;软件已经交付使用之后&#xff0c;…...

docker- php7.4

安装 gd拓展 anzhuanga在Dockerfile里面安装php7.4的GD库 - 知乎 apt update apt install -y libwebp-dev libjpeg-dev libpng-dev libfreetype6-devdocker-php-source extractdocker-php-ext-configure gd \ --with-jpeg/usr/include \ --with-freetype/usr/include/docker-…...

开发一个Android App,在项目中完成添加联系人的功能,通过ContentResolver向系统中添加联系人信息。

实现步骤&#xff1a; &#xff08;1&#xff09;添加动态联系人的权限。 &#xff08;2&#xff09;创建Activity和布局文件&#xff0c;添加输入框和按钮等控件。 &#xff08;3&#xff09;完成添加联系人的功能。 代码文件如下&#xff1a; activity_main.xml文件 <!…...

Flume搭建

压缩包版本&#xff1a;apache-flume-1.9.0-bin.tar 百度盘链接&#xff1a;https://pan.baidu.com/s/1ZhSiePUye9ax7TW5XbfWdw 提取码&#xff1a;ieks 1.解压 tar -zxvf /opt/software/apache-flume-1.9.0-bin.tar.gz -C /opt/module/ 2. 修改文件名 [rootbigdata1 opt]…...

Web APIs 1 DOM操作

Web APIs 1 引入&#xff1a;const优先Web API 基本认知01 作用和分类02 什么是DOM03 DOM树04 DOM对象 获取DOM对象01 根据CSS选择器获取02 其他获取DOM元素方法 操作元素内容01 innerText 属性02 innerHTML 属性 操作元素属性操作元素的常用属性操作元素的样式属性操作表单元素…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

【若依】框架项目部署笔记

参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作&#xff1a; 压缩包下载&#xff1a;http://download.redis.io/releases 1. 上传压缩包&#xff0c;并进入压缩包所在目录&#xff0c;解压到目标…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...

CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx

“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网&#xff08;IIoT&#xff09;场景中&#xff0c;结合 DDS&#xff08;Data Distribution Service&#xff09; 和 Rx&#xff08;Reactive Extensions&#xff09; 技术&#xff0c;实现 …...

开疆智能Ethernet/IP转Modbus网关连接鸣志步进电机驱动器配置案例

在工业自动化控制系统中&#xff0c;常常会遇到不同品牌和通信协议的设备需要协同工作的情况。本案例中&#xff0c;客户现场采用了 罗克韦尔PLC&#xff0c;但需要控制的变频器仅支持 ModbusRTU 协议。为了实现PLC 对变频器的有效控制与监控&#xff0c;引入了开疆智能Etherne…...