Python 处理小样本数据的文档分类问题
在处理小样本数据的文档分类问题时,可以尝试使用迁移学习或者基于预训练模型的方法,如BERT、GPT等。然而,直接在这里编写一个完整的深度学习文档分类代码超出了这个平台的限制,但我可以为你提供一个基本的思路和简单示例,你可以根据这个思路进一步研究并实现。
# 导入必要的库
from transformers import BertTokenizer, BertForSequenceClassification
import torch
from torch.utils.data import Dataset, DataLoader# 假设你已经有了预处理的数据,每个样本是一个dict,包含'id','text'和'label'
class DocumentDataset(Dataset):def __init__(self, data, tokenizer, max_len):self.data = dataself.tokenizer = tokenizerself.max_len = max_lendef __len__(self):return len(self.data)def __getitem__(self, idx):text = self.data[idx]['text']label = self.data[idx]['label']encoding = self.tokenizer.encode_plus(text,add_special_tokens=True,max_length=self.max_len,padding='max_length',truncation=True,return_attention_mask=True,return_tensors='pt',)return {'input_ids': encoding['input_ids'].flatten(),'attention_mask': encoding['attention_mask'].flatten(),'labels': torch.tensor(label, dtype=torch.long)}# 初始化预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=NUM_CLASSES) # NUM_CLASSES是你类别的数量# 假设你已经加载了小量数据到data变量中
dataset = DocumentDataset(data, tokenizer, max_len=128) # 调整max_len以适应你的需求
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE) # BATCH_SIZE是批次大小# 然后进行模型训练,这里仅展示训练循环的基本结构
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # 设置学习率for epoch in range(NUM_EPOCHS): # NUM_EPOCHS是训练轮数for batch in dataloader:input_ids = batch['input_ids'].to(device)attention_mask = batch['attention_mask'].to(device)labels = batch['labels'].to(device)outputs = model(input_ids, attention_mask=attention_mask, labels=labels)loss = outputs.lossoptimizer.zero_grad()loss.backward()optimizer.step()# 训练完成后,你可以用验证集或测试集评估模型性能# 注意:由于数据量较小,过拟合的风险较高,可能需要采取正则化、早停法等策略来优化模型。
以上代码仅为示例,并未涵盖完整的工作流程,包括数据预处理、模型微调、模型评估与选择等步骤。在实际应用中,你还需要根据具体的数据格式和项目需求进行相应的调整。同时,对于小样本问题,也可以考虑采用数据增强、元学习等相关技术提高模型性能
相关文章:
Python 处理小样本数据的文档分类问题
在处理小样本数据的文档分类问题时,可以尝试使用迁移学习或者基于预训练模型的方法,如BERT、GPT等。然而,直接在这里编写一个完整的深度学习文档分类代码超出了这个平台的限制,但我可以为你提供一个基本的思路和简单示例ÿ…...

centos7安装oracle
1 安装虚拟机 设置4G内存,硬盘40G 2 配置网络环境 2.1配置主机名 # vi /etc/hostname 修改为 oracle2.2 配置IP地址 # vi /etc/sysconfig/network-scripts/ifcfg-ens33 修改 BOOTPROTO"static" ONBOOT"yes" IPADDR192.168.109.110 NETMAS…...

Web html
目录 1 前言2 HTML2.1 元素(Element)2.1.1 块级元素和内联(行级)元素2.1.2 空元素 2.2 html页面的文档结构2.3 常见标签使用2.3.1 注释2.3.2 标题2.3.3 段落2.3.4 列表2.3.5 超链接2.3.6 图片2.3.7 内联(行级)标签2.3.8 换行 2.4 属性2.4.1 布尔属性 2.5 实体引用2.6 空格2.7 D…...
Go语言学习踩坑记
go: go.mod file not found in current directory or any parent directory; see go help mod 解决 资源下载: 序号文件地址1 1、Go IDE liteidex38.3-win64-qt5.15.2.zip Release x38.3 visualfc/liteide GitHub2 2、Go语言的编译环境 go1.21.6.windows-amd64.m…...

Vue-easy-tree封装及使用
1.使用及安装 下载依赖 npm install wchbrad/vue-easy-tree引入俩种方案 1.在main.js中引入 import VueEasyTree from "wchbrad/vue-easy-tree"; import "wchbrad/vue-easy-tree/src/assets/index.scss" Vue.use(VueEasyTree)2.当前页面引入 import VueEa…...

opencv中使用cuda加速图像处理
opencv大多数只使用到了cpu的版本,实际上对于复杂的图像处理过程用cuda(特别是高分辨率的图像)可能会有加速效果。是否需要使用cuda需要思考: 1、opencv的cuda库是否提供了想要的算子。在CUDA-accelerated Computer Vision你可以…...

FPGA高端项目:IMX327 MIPI 视频解码 USB3.0 UVC 输出,提供FPGA开发板+2套工程源码+技术支持
目录 1、前言免责声明 2、相关方案推荐我这里已有的 MIPI 编解码方案 3、本 MIPI CSI-RX IP 介绍4、个人 FPGA高端图像处理开发板简介5、详细设计方案设计原理框图IMX327 及其配置MIPI CSI RX图像 ISP 处理图像缓存UVC 时序USB3.0输出架构 6、vivado工程详解FPGA逻辑设计 7、工…...
深入探索 MySQL 8 中的 JSON 类型:功能与应用
随着 NoSQL 数据库的兴起,JSON 作为一种轻量级的数据交换格式受到了广泛的关注。为了满足现代应用程序的需求,MySQL 8引入了原生的 JSON 数据类型,提供了一系列强大的 JSON 函数来处理和查询 JSON 数据。本文将深入探讨 MySQL 8 中JSON 类型的…...

学习Spring的第十三天
非自定义bean注解开发 设置非自定义bean : 用bean去修饰一个方法 , 最后去返回 , spring就把返回的这个对象,放到Spring容器 一 :名字 : 如果bean配置了参数 , 名字就是参数名 , 如果没有 , 就是方法名字 二 : 如果方法产生对象时 , 需要注入数据 , 在方法参数设置即可 , …...

jss/css/html 相关的技术栈有哪些?
js 的技术组件有哪些?比如 jQuery vue 等 常见的JavaScript技术组件: jQuery: jQuery是一个快速、小巧且功能丰富的JavaScript库,用于简化DOM操作、事件处理、动画效果等任务。 React: React是由Facebook开发的用于构…...

机器学习超参数优化算法(贝叶斯优化)
文章目录 贝叶斯优化算法原理贝叶斯优化的实现(三种方法均有代码实现)基于Bayes_opt实现GP优化基于HyperOpt实现TPE优化基于Optuna实现多种贝叶斯优化 贝叶斯优化算法原理 在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤: …...

Sklearn、TensorFlow 与 Keras 机器学习实用指南第三版(六)
原文:Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 译者:飞龙 协议:CC BY-NC-SA 4.0 第十四章:使用卷积神经网络进行深度计算机视觉 尽管 IBM 的 Deep Blue 超级计算机在 1996 年击败了国际象棋世界冠军…...
XGB-3: 模型IO
在XGBoost 1.0.0中,引入了对使用JSON保存/加载XGBoost模型和相关超参数的支持,旨在用一个可以轻松重用的开放格式取代旧的二进制内部格式。后来在XGBoost 1.6.0中,还添加了对通用二进制JSON的额外支持,作为更高效的模型IO的优化。…...
springboot(ssm船舶维保管理系统 船只报修管理系统Java系统
springboot(ssm船舶维保管理系统 船只报修管理系统Java系统 开发语言:Java 框架:springboot(可改ssm) vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7&a…...

机器学习本科课程 大作业 多元时间序列预测
1. 问题描述 1.1 阐述问题 对某电力部门的二氧化碳排放量进行回归预测,有如下要求 数据时间跨度从1973年1月到2021年12月,按月份记录。数据集包括“煤电”,“天然气”,“馏分燃料”等共9个指标的数据(其中早期的部分…...
[office] excel中weekday函数的使用方法 #学习方法#微信#媒体
excel中weekday函数的使用方法 在EXCEL中Weekday是一个日期函数,可以计算出特定日期所对应的星期数。下面给大家介绍下Weekday函数作用方法。 01、比如,我在A84单元格输入一个日期,2018/5/9;那么,我们利用weekday计算…...

PAT-Apat甲级题1007(python和c++实现)
PTA | 1007 Maximum Subsequence Sum 1007 Maximum Subsequence Sum 作者 CHEN, Yue 单位 浙江大学 Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni1, ..., Nj } where 1≤i≤j≤K. The Maximum Su…...
洛谷:P2957 [USACO09OCT] Barn Echoes G
题目描述 The cows enjoy mooing at the barn because their moos echo back, although sometimes not completely. Bessie, ever the excellent secretary, has been recording the exact wording of the moo as it goes out and returns. She is curious as to just how mu…...
flinksqlbug : AggregateFunction udf Could not extract a data type from
org.apache.flink.table.api.ValidationException: SQL validation failed. An error occurred in the type inference logic of function ‘default_catalog.default_database.CollectSetSort’. org.apache.flink.table.api.ValidationException: An error occurred in the t…...

Aigtek高压放大器用途是什么呢
高压放大器在电子领域中扮演着至关重要的角色,其主要作用是将低电压信号放大到更高的电压水平。这种类型的放大器广泛用于各种应用中,以下是高压放大器的用途以及其关键作用的详细介绍。 1、科学研究和实验室应用: 高压放大器在科学研究和实验…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...