洛谷C++简单题小练习day9—[AHOI2017]寻找探监点
day9--[AHOI2017]寻找探监点--2.7
习题概述
题目描述
一个n×n 的网格图(标号由 1,1 开始)上有 m 个探测器,每个探测器有个探测半径 r ,问这 n×n 个点中有多少个点能被探测到。
输入格式
第一行 3 个整数 n,m,r。
接下来 m 行,每行两个整数x,y表示第 i 个探测器的坐标。
输出格式
能被探测到的点的个数。

代码部分
#include<bits/stdc++.h>
using namespace std;
int x[10001],y[10001];
bool a[10001][10001];
int m,n,r;
int main()
{cin>>n>>m>>r;int ans=0;//通过循环读取m组x和y的坐标值for(int i1=1;i1<=m;i1++){cin>>x[i1]>>y[i1];{//嵌套两层循环遍历平面上的所有点,计算每个点与给定点之间的距离for(int j=1;j<=n;j++){double o1=sqrt((x[i1]-i)*(x[i1]-i)+(y[i1]-j)*(y[i1]-j)); //两点距离公式//并判断是否小于等于r,如果是则将a数组对应位置置为trueif(o1<=r) a[i][j]=true;} }
}
//遍历平面上的所有点,统计满足条件的点的数量for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)if(a[i][j]==1) ans++;cout<<ans;return 0;
}
心得体会
1.很简单的一道题,对于r最初的理解错了, r 指的是一个大范围 !!!

2. 代码中的两点距离公式用于计算平面上两个点之间的距离,通过欧几里得距离公式来实现的。在代码中,两点的坐标分别为 (x[i1], y[i1]) 和 (i, j)。
根据欧几里得距离公式,两点之间的距离可以计算为:
d = sqrt( (x[ i1] - i)^2 + (y[ i1] - j)^2 )
其中,^2 表示对其前面的数进行平方运算,sqrt() 函数表示求平方根。
double o1=sqrt( (x[ i1] - i )*(x[ i1] - i )+(y[ i1] - j )*(y[ i1] - j ) ) ;
3.代码总结:
(1)代码首先通过标准输入读取了三个整数n、m和r,分别表示网格图的大小、探测器的数量以及探测半径。
(2)然后通过循环逐个读取m个探测器的坐标位置(x, y),接着使用嵌套的两层循环遍历整个n×n的网格图上的所有点,计算每个点到探测器的距离,如果小于等于探测半径r,则将对应的a数组位置置为true,表示该点能被探测到。
(3)最后再次使用嵌套的两层循环遍历整个网格图,统计满足被探测到条件的点的数量,并输出结果。
相关文章:
洛谷C++简单题小练习day9—[AHOI2017]寻找探监点
day9--[AHOI2017]寻找探监点--2.7 习题概述 题目描述 一个nn 的网格图(标号由 1,1 开始)上有 m 个探测器,每个探测器有个探测半径 r ,问这 nn 个点中有多少个点能被探测到。 输入格式 第一行 3 个整数 n,m,r。 接下来 m 行&…...
JVM双亲委派机制
双亲委派模型是一种组织类加载器之间关系的一种规范,他的工作原理是:如果一个类加载器收到了类加载的请求,它不会自己去尝试加载这个类,而是把这个请求委派给父类加载器去完成,这样层层递进,最终所有的加载请求都被传到最顶层的启动类加载器中,只有当父类加载器无法完成这个加载…...
思科模拟器实验合集
目 录 实验一 常用网络命令的使用.................................... 1 实验二 双绞线制作.................................................. 12 实验三 网络模拟软件.............................................. 15 实验四 交换机基本配置..................…...
18.AUTOSAR 网络管理系统(一)
目录 1.为什么需要整车网络管理 2.本地唤醒和网络唤醒 3.小结 1.为什么需要整车网络管理 在描述AUTOSAR网络管理细节前,大家可以思考几个问题: 1.网络管理为整车系统提供了什么样的服务? 2.整车网络视角看,每个ECU的上下电是…...
802.11 MAC帧介绍
控制帧 RTS(Request To Send):用于申请无线媒介的使用时间CTS(Clear To Send):用于回复RTS帧ACK:对MAC帧的肯定确认PS-POLL:STA用于从AP中获取因省电模式而缓存的数据,只…...
【高阶数据结构】B-树详解
文章目录 1. 常见的搜索结构2. 问题提出使用平衡二叉树搜索树的缺陷使用哈希表的缺陷 3. B-树的概念4. B-树的插入分析插入过程分析插入过程总结 5. B-树的代码实现5.1 B-树的结点设计5.2 B-树的查找5.3 B-树的插入实现InsertKey插入和分裂测试 6. B-树的删除(思想&…...
elementui常用组件-个人版(间断更新)
Dialog 对话框 el-dialog <el-dialogtitle"提示":visible.sync"dialogVisible"width"30%":before-close"handleClose"><span>这是一段信息</span><span slot"footer" class"dialog-footer"…...
无人机在化工消防救援中的应用,消防无人机应用场景分析
火灾对社会环境具有较大影响,因此需要重视消防灭火救援工作,注重现代化技术的运用,将无人机应用到救援过程并保障其应用质量。无人机是一项重要技术,便于消防灭火救援操作,使救援过程灵活展开,排除不利影响…...
java设计模式- 建造者模式
一 需求以及实现方式 1.1 需求描述 我们要创建一个表示汽车的复杂对象,汽车包含发动机、轮胎和座椅等部分。用传统方式创建,代码如下 1.2 传统实现方式 1.抽象类 public abstract class BuildCarAbstaract {//引擎public abstract void buildEng…...
【C++航海王:追寻罗杰的编程之路】类与对象你学会了吗?(下)
目录 1 -> 再谈构造函数1.1 -> 构造函数体赋值1.2 -> 初始化列表1.3 -> explicit关键字 2 -> static成员2.1 -> 概念2.2 -> 特性 3 -> 友元3.1 -> 友元函数3.2 -> 友元类 4 -> 内部类5 -> 匿名对象6 -> 拷贝对象时的一些编译器优化 1 -…...
解决TSP旅行商问题3个可以用Python编程的优化路径算法
旅行商问题(Traveling Salesman Problem, TSP)是一个经典的组合优化问题,它要求找到访问一系列城市并返回起点的最短可能路线,同时每个城市仅访问一次。这个问题是NP-hard的,意味着没有已知的多项式时间复杂度的精确算…...
10英寸安卓车载平板电脑丨ONERugged车载工业平板:解决农业工作效率
农业是人类社会的基石之一,而农业工作效率的提升一直是农民和农业专业人士关注的重要议题。随着技术的不断进步,车载工业平板成为了解决农业工作效率的创新解决方案。本文将探讨车载工业平板如何为农业带来巨大的改变,提高农民的工作效率和农…...
Mysql报错:too many connections
1 问题原因 MySQL报错“too many connections”通常是由于数据库的最大连接数超过了MySQL配置的最大限制。有以下几个原因: (1)访问量过高:当MySQL服务器面对大量的并发请求时,已经建立的连接数可能会不足以处理所有的请求,从而导致连接池耗尽、连接被拒绝、出现“too …...
1Panel面板如何安装并结合内网穿透实现远程访问本地管理界面
文章目录 前言1. Linux 安装1Panel2. 安装cpolar内网穿透3. 配置1Panel公网访问地址4. 公网远程访问1Panel管理界面5. 固定1Panel公网地址 前言 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。高效管理,通过 Web 端轻松管理 Linux 服务器,包括主机监控、…...
Linux(Debian系)的Python导入pandas包,报错:ImportError: No module named ‘_bz2‘
前言: 硬件操作系统国产化路漫漫,由此可见华为的厉害。 今天在香橙派上用自己编译的python导入pandas时,报错: from _bz2 import BZ2Compressor, BZ2Decompressor ImportError: No module named _bz2ImportError: No module name…...
React useEffect使用
第一 export default function App() { const [name,setname] useState(huhu) useEffect(()>{ setname(name.substring(0,1).toUpperCase()name.substring(1)) },[name]) //[name,age]//可以有多个参数 //带参数,第一次默认执行一次,第二次name更新…...
三网码支付系统源码,三网免挂有PC软件,有云端源码,附带系统搭建教程
搭建教程 1.先上传云端源码 然后配置Core/Config.php文件里面数据库信息注改;数据库帐号密码 2.云端源码里面Core/Api_Class/Instant_Url_List.php文件配置终端地址注改;第4 http://终端地址/ 3.导入云端数据库 账号admin 密码123456注改࿱…...
编程笔记 html5cssjs 073 JavaScript Object数据类型
编程笔记 html5&css&js 073 JavaScript Object数据类型 一、创建 Object二、Object 类型的属性与方法三、示例四、参考小结 JavaScript 中的 Object 数据类型是该语言中最复杂也最灵活的数据类型之一,它是其他所有内置对象和用户自定义对象的基础。在 JavaS…...
【Linux】基于管道进行进程间通信
进程间通信 一、初识进程间通信1. 进程间通信概念2. 进程间通信分类 二、管道1. 管道概念2. 管道原理3. 匿名管道4. 匿名管道系统接口5. 管道的特性和情况6. 匿名管道的应用(1)命令行(2)进程池 7. 命名管道(1ÿ…...
Vue中间件的讲解案例分析
Vue中间件的讲解案例分析 1. Axios中间件: Axios是一个常用的HTTP客户端,可以与Vue结合使用,处理网络请求和数据获取。您可以创建一个Axios实例,并将其作为Vue的原型属性或插件使用,以便在整个应用程序中共享和使用。…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
