当前位置: 首页 > news >正文

【Flask + AI】接入CHATGLM API 实现翻译接口

【Flask + AI】接入CHATGLM API 实现翻译接口

最近的项目中,需要加一个翻译功能,正好chatglm4发布了,于是决定着手用它实现。

https://chatglm.cn

准备

首先,在chatglm开发者中心申请api key,这里不再赘述
其次,选择自己的开发框架,这里以 flask 为例

提示词

要实现翻译功能,一个优良的提示词十分重要。
经过多次测试,得到了这样一个较为稳定的提示词。

prompt_translation = """zh-en translation of "input".Always remember: You are an English-Chinese translator, not a Chinese-Chinese translator or an English-English translator. Your output should only contains Chinese or English!You should Always just do the translate part and do not change its meaning! example1:input:"write me a poem",output:"帮我写一首诗"example2:input:"你好世界",output:"hello world"Now I will give you my input:
"""

这个Prompt实现了中英互译,注意,这两个例子非常重要,如果没有,模型可能会永远输出英文或者中文。在调用api时,把这个提示词设置为 assistant 可以减小模型把这段话认为是指令的概率。

接口代码

@glm_blueprint.route('/api/glmTranslation', methods=['POST'])
def translation():user_content = request.json.get('user-content')if not user_content:return jsonify({'error': 'No user-content provided'}), 400contentPrompt = prompt_translationcompletion = client.chat.completions.create(model='glm-4',messages=[{"role": "system", "content": contentPrompt},{"role": "assistant", "content": user_content}],max_tokens=200,temperature=0.1,)# 将 ChatCompletionMessage 对象转换为可序列化的格式response_message = completion.choices[0].message.content if completion.choices[0].message else "No response"return jsonify({"response": response_message})
  • role 设置为 assistant 或 user 效果会不同
  • 模型可以自己更改,glm-4目前效果最好
  • 如果要节省token,可以限制max_token

相关文章:

【Flask + AI】接入CHATGLM API 实现翻译接口

【Flask AI】接入CHATGLM API 实现翻译接口 最近的项目中,需要加一个翻译功能,正好chatglm4发布了,于是决定着手用它实现。 https://chatglm.cn 准备 首先,在chatglm开发者中心申请api key,这里不再赘述 其次&…...

并发事务带来的问题及解决方法

引言 在数据库系统中,事务是指一组操作被视为一个逻辑单元,要么全部执行成功,要么全部不执行,保证数据库的一致性和完整性。而并发事务则是指多个事务同时执行的情况。虽然并发事务能够提高系统的性能和吞吐量,但也会…...

CRNN介绍:用于识别图中文本的深度学习模型

CRNN:用于识别图中文本的深度学习模型 CRNN介绍:用于识别图中文本的深度学习模型CRNN的结构组成部分工作原理 CRNN结构分析卷积层(Convolutional Layers)递归层(Recurrent Layers)转录层(Transc…...

机器人运动学林沛群——变换矩阵

对于仅有移动,由上图可知: A P B P A P B o r g ^AP^BP^AP_{B org} APBPAPBorg​ 对于仅有转动,可得: A P B A R B P ^AP^A_BR^BP APBA​RBP 将转动与移动混合后,可得: 一个例子 在向量中&#xff…...

阿里云增加数据库访问白名单

阿里云增加数据库访问白名单 概况 我们希望在外网访问数据库时,可能会遇到无法连接的问题,这有可能是被拦截了。这时就需要去查看自己的ip有没有在白名单里面,没有的话就把ip加入到白名单。 路径 阿里云控制台-搜索RDS-进入RDS管理控制台…...

Rust基础拾遗--辅助功能

Rust基础拾遗 前言1.错误处理1.1 panic为什么是 Result 2. create与模块3. 宏4. 不安全代码5. 外部函数 前言 通过Rust程序设计-第二版笔记的形式对Rust相关重点知识进行汇总,读者通读此系列文章就可以轻松的把该语言基础捡起来。 1.错误处理 Rust 中的两类错误处理…...

【数据结构】双向链表(链表实现+测试+原码)

前言 在双向链表之前,如果需要查看单链表来复习一下,链接在这里: http://t.csdnimg.cn/Ib5qS 1.双向链表 1.1 链表的分类 实际中链表的结构非常多样,以下情况组合起来就有8种链表结构: 1.1.1 单向或者双向 1.1.2 …...

ChatGPT 3.5与4.0:深入解析技术进步与性能提升的关键数据

大家好,欢迎来到我的博客!今天我们将详细比较两个引人注目的ChatGPT版本——3.5和4.0,通过一些关键数据来深入解析它们之间的差异以及4.0版本的技术进步。 1. 模型规模与参数 ChatGPT 3.5: 参数数量:约1.7亿个模型层数…...

前端JavaScript篇之ajax、axios、fetch的区别

目录 ajax、axios、fetch的区别AjaxAxiosFetch总结注意 ajax、axios、fetch的区别 在Web开发中,ajax、axios和fetch都是用于与服务器进行异步通信的技术,但它们在实现方式和功能上有所不同。 Ajax 定义与特点:Ajax是一种在无需重新加载整个…...

【PyTorch][chapter 15][李宏毅深度学习][Neighbor Embedding-LLE]

前言: 前面讲的都是线性降维,本篇主要讨论一下非线性降维. 流形学习(mainfold learning)是一类借鉴了拓扑流行概念的降维方法. 如上图,欧式距离上面 A 点跟C点更近,距离B 点较远 但是从图形拓扑结构来看, …...

在JSP中实现JAVABEAN

在JSP中实现JAVABEAN 问题陈述 创建Web应用程序以连接数据库并检索作者名、地址、城市、州及邮政编码等与作者的详细信息。JavaBean组件应接受作者ID、驱动程序名及URL作为参数。信息要从authors表中检索。 解决方案 要解决上述问题,需要执行以下任务: 创建Web应用程序。创…...

智能优化算法 | Matlab实现飞蛾扑火(MFO)(内含完整源码)

文章目录 效果一览文章概述源码设计参考资料效果一览 文章概述 智能优化算法 | Matlab实现飞蛾扑火(MFO)(内含完整源码) 源码设计 %%%% clear all clc SearchAgents_no=100; % Number of search ag...

LSF 主机状态 unreach 分析

在LSF集群运行过程中,有主机状态变为 unreach。熟悉LSF的朋友都知道主机状态为 unreach 表示主机上的 SBD 服务中断服务了,但其它服务 LIM 和 RES 还在正常运行。 影响分析 那么主机上的 SBD 服务中断的影响是什么呢? 我们需要先明白 SBD …...

SpringBoot日志

自定义日志 导入的是slf4j的Logger类 package app.controller;import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.web.bind.annotation.RestController; import org.springframework.web.bind.annotation.GetMapping;RestController pu…...

006集——where语句进行属性筛选——arcgis

在arcgis中, dBASE 文件除了 WHERE 语句以外,不支持 其它 SQL 命令。选择窗口如下: 首先,我们了解下什么是where语句。 WHERE语句是SQL语言中使用频率很高的一种语句。它的作用是从数据库表中选择一些特定的记录行来进行操作。WHE…...

《动手学深度学习(PyTorch版)》笔记8.3

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过&…...

静态时序分析:建立时间分析

静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中,建立时间检查约束了触发器时钟引脚(时钟路径)和输入数据引脚(数据路径)之间的时序关系&#x…...

深入探究 HTTP 简化:httplib 库介绍

✏️心若有所向往,何惧道阻且长 文章目录 简介特性主要类介绍httplib::Server类httplib::Client类httplib::Request类httplib::Response类 示例服务器客户端 总结 简介 在当今的软件开发中,与网络通信相关的任务变得日益普遍。HTTP(Hypertext…...

ARP欺骗攻击利用之抓取https协议的用户名与密码

1.首先安装sslstrip 命令执行:apt-get install sslstrip 2.启动arp欺骗 arpspoof -i ech0 -t 192.168.159.148 192.168.159.2 arpspoof -i ech0(网卡) -t 目标机ip 本地局域网关 3.命令行输入: vim /etc/ettercap/etter.conf进入配置文件 找到下红框的内容&a…...

<s-table>、<a-table>接收后端数据

对于 中的 <template #bodyCell“{ column, record }”> &#xff1a; <s-tableref"table":columns"columns":data"loadData":alert"options.alert.show"bordered:row-key"(record) > record.id":tool-config&…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...