当前位置: 首页 > news >正文

InternLM大模型实战-4.XTuner大模型低成本微调实战

文章目录

  • 前言
  • 笔记正文
    • XTuner
      • 支持模型和数据集
    • 微调原理
    • 跟随文档学习
    • 快速上手
    • 自定义微调
      • 准备数据
      • 准备配置文件
    • MS-Agent微调

前言

本文是对于InternLM全链路开源体系系列课程的学习笔记。【XTuner 大模型单卡低成本微调实战】 https://www.bilibili.com/video/BV1yK4y1B75J/?share_source=copy_web&vd_source=99d9a9488d6d14ace3c7925a3e19793e

笔记正文

XTuner

地址:XTuner

一个大预言模型微调工具箱

  • 傻瓜化:以配置文件的形式封装了大部分微调场景
  • 轻量级:对于7B参数量的LLM,微调所需的最小显存仅为8GB。

支持模型和数据集

在这里插入图片描述

微调原理

  • LoRA:只对玩具中某些零件记性改动,而不是对整个玩具进行全面改动
  • QLoRA:LoRA的一种改进,如果你手里只有一把生锈的螺丝刀,也能改造你的玩具。

跟随文档学习

文档提供了三个微调的例子,分别叫做快速上手、自定义微调和MS-Agent微调。

快速上手

首先介绍了如何安装微调的XTuner环境,然后介绍了具有多个开箱即用的配置文件,并对于这些配置文件的名称进行了解释
例如文件名:internlm_chat_7b_qlora_oasst1_e3

模型名internlm_chat_7b
使用算法qlora
数据集oasst1
把数据集跑几次跑三次:e3

然后根据实际模型、数据集存放的位置、实际训练需求,修改配置文件中的信息。

接着就可以开始微调了。

微调训练完成后,应该在work_dirs的目录下产生pth权重,需要将其转换成hf格式的模型

xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH_file_dir} ${SAVE_PATH}

转换后,生成的文件应该是

|-- README.md
|-- adapter_config.json
|-- adapter_model.bin
`-- xtuner_config.py

可以理解为LoRA模型文件=Adapter

然后将hf的adapter合并到原LLM,并与之对话,这些需求xtuner都提供了相应的命令行工具。

自定义微调

这个部分演示了在实际需求下如何准备数据、修改配置文件、进行微调。

准备数据

将表格(或者其他数据格式)数据转化成jsonL格式。也就是json列表

[{"conversation":[{"system": "xxx","input": "xxx","output": "xxx"}]
},
{"conversation":[{"system": "xxx","input": "xxx","output": "xxx"}]
}]

然后划分训练集和测试集等。

准备配置文件

可以从下面的对配置文件的修改看出如何使用这种所谓的“自定义数据集”进行微调训练。

# 修改import部分
- from xtuner.dataset.map_fns import oasst1_map_fn, template_map_fn_factory
+ from xtuner.dataset.map_fns import template_map_fn_factory# 修改模型为本地路径
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm-chat-7b'# 修改训练数据为 MedQA2019-structured-train.jsonl 路径
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = 'MedQA2019-structured-train.jsonl'# 修改 train_dataset 对象
train_dataset = dict(type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=data_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=data_path)),tokenizer=tokenizer,max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),remove_unused_columns=True,shuffle_before_pack=True,pack_to_max_length=pack_to_max_length)

然后和前文差不多。

MS-Agent微调

数据也是由jsonl格式的,但是与前面的input、output不同,现在的每个conversations则需要赋予不同的身份了。

  • system: 表示给模型前置的人设输入,其中有告诉模型如何调用插件以及生成请求
  • user: 表示用户的输入 prompt,分为两种,通用生成的prompt和调用插件需求的 prompt
  • assistant: 为模型的回复。其中会包括插件调用代码和执行代码,调用代码是要 LLM 生成的,而执行代码是调用服务来生成结果的

而assistant则需要包含工具调用和返回,分别叫做思考阶段和执行阶段,这两个阶段是不输出的,具体格式如下
图片来源https://github.com/InternLM/tutorial/blob/main/xtuner/README.md
图片来源https://github.com/InternLM/tutorial/blob/main/xtuner/README.md

之后就是找到对应的训练配置文件,根据实际情况等进行修改即可。

相关文章:

InternLM大模型实战-4.XTuner大模型低成本微调实战

文章目录 前言笔记正文XTuner支持模型和数据集 微调原理跟随文档学习快速上手自定义微调准备数据准备配置文件 MS-Agent微调 前言 本文是对于InternLM全链路开源体系系列课程的学习笔记。【XTuner 大模型单卡低成本微调实战】 https://www.bilibili.com/video/BV1yK4y1B75J/?…...

【SpringBoot篇】解决Redis分布式锁的 误删问题 和 原子性问题

文章目录 🍔Redis的分布式锁🛸误删问题🎈解决方法🔎代码实现 🛸原子性问题🌹Lua脚本 ⭐利用Java代码调用Lua脚本改造分布式锁🔎代码实现 🍔Redis的分布式锁 Redis的分布式锁是通过利…...

蓝桥杯Web应用开发-CSS3 新特性【练习三:文本阴影】

文本阴影 text-shadow 属性 给文本内容添加阴影的效果。 文本阴影的语法格式如下: text-shadow: x-offset y-offset blur color;• x-offset 是沿 x 轴方向的偏移距离,允许负值,必须参数。 • y-offset 是沿 y 轴方向的偏移距离&#xff0c…...

LRU缓存

有人从网络读数据,有人从磁盘读数据,机智的人懂得合理利用缓存加速数据的读取效率,提升程序的性能,搏得上司的赏识,赢得白富美的青睐,进一步走向人生巅峰~ LRU假说 LRU缓存(Least Recently Used…...

ncc匹配提速总结

我们ncc最原始的匹配方法是:学习模板w*h个像素都要带入ncc公式计算 第一种提速,学习模板是w*h,而我们支取其中的w/2*h/2,匹配窗口同理,计算量只有1/4。 另外一种因为ncc是线性匹配,我们在这上面也做了文章&#xff0…...

人力资源智能化管理项目(day06:员工管理)

学习源码可以看我的个人前端学习笔记 (github.com):qdxzw/humanResourceIntelligentManagementProject 页面结构 <template><div class"container"><div class"app-container"><div class"left"><el-input style&qu…...

Java实现数据可视化的智慧河南大屏 JAVA+Vue+SpringBoot+MySQL

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 数据模块 A4.2 数据模块 B4.3 数据模块 C4.4 数据模块 D4.5 数据模块 E 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的数据可视化的智慧河南大屏&#xff0c;包含了GDP、…...

【Flink】FlinkSQL的DataGen连接器(测试利器)

简介 我们在实际开发过程中可以使用FlinkSQL的DataGen连接器实现FlinkSQL的批或者流模拟数据生成,DataGen 连接器允许按数据生成规则进行读取,但注意:DataGen连接器不支持复杂类型: Array,Map,Row。 请用计算列构造这些类型 创建有界DataGen表 CREATE TABLE test ( a…...

5G NR 频率计算

5G中引入了频率栅格的概念&#xff0c;也就是小区中心频点和SSB的频域位置不能随意配置&#xff0c;必须满足一定规律&#xff0c;主要目的是为了UE能快速的搜索小区&#xff1b;其中三个最重要的概念是Channel raster 、synchronization raster和pointA。 1、Channel raster …...

关于物理机ping不通虚拟机问题

方法一 设置虚拟机处于桥接状态即可&#xff1a;&#xff08;虚拟机->设置->网络适配器&#xff09;&#xff0c;选择完确定&#xff0c;重启虚拟机即可。 方法二 如果以上配置还是无法ping通&#xff1a;&#xff08;编辑->虚拟网络编辑器&#xff09; 首先查看主机网…...

深度学习在知识图谱问答中的革新与挑战

目录 前言1 背景知识2 基于深度学习改进问句解析模型2.1 谓词匹配2.2 问句解析2.3 逐步生成查询图 3 基于深度学习的端到端模型3.1 端到端框架3.2 简单嵌入技术 4 优势4.1 深入的问题表示4.2 实体关系表示深挖4.3 候选答案排序效果好 5 挑战5.1 依赖大量训练语料5.2 推理类问句…...

JAVA设计模式之职责链模式详解

职责链模式 1 职责链模式介绍 职责链模式(chain of responsibility pattern) 定义: 避免将一个请求的发送者与接收者耦合在一起,让多个对象都有机会处理请求.将接收请求的对象连接成一条链,并且沿着这条链传递请求,直到有一个对象能够处理它为止. 在职责链模式中&#xff0c…...

CSP-201912-1-报数

CSP-201912-1-报数 知识点总结 整数转化为字符串#include <string> string str_num to_string(num);字符串中查找是否包含字符‘7’&#xff1a;str_num.find(7) 未找到返回-1找到返回返回该字符在字符串中的位置&#xff08;即第一次出现的索引位置&#xff09; #i…...

前后端分离好处多多,怕就怕分工不分人,哈哈

前后端分离倡导多年了&#xff0c;现在基本成为了开发的主流模式了&#xff0c;贝格前端工场承接的前端项目只要不考虑seo的&#xff0c;都采用前后端分离模式&#xff0c;这篇文章就来介绍一下前后端分离模式。 一、什么是前后端分离开发模式 前后端分离是一种软件开发的架构…...

机器学习:Softmax介绍及代码实现

Softmax原理 Softmax函数用于将分类结果归一化&#xff0c;形成一个概率分布。作用类似于二分类中的Sigmoid函数。 对于一个k维向量z&#xff0c;我们想把这个结果转换为一个k个类别的概率分布p(z)。softmax可以用于实现上述结果&#xff0c;具体计算公式为&#xff1a; 对于…...

python基于flask的网上订餐系统769b9-django+vue

课题主要分为两大模块&#xff1a;即管理员模块和用户模块&#xff0c;主要功能包括个人中心、用户管理、菜品类型管理、菜品信息管理、留言反馈、在线交流、系统管理、订单管理等&#xff1b; 如果用户想要交换信息&#xff0c;他们需要满足双方交换信息的需要。由于时间有限…...

jenkins 发布远程服务器并部署项目

安装参考另一个文章 配置maven 和 jdk 和 git 注意jdk的安装目录&#xff0c;是jenkins 安装所在服务器的jdk目录 注意maven的目录 是jenkins 安装所在服务器的maven目录 注意git的目录 是jenkins 安装所在服务器的 git 目录 安装 Publish Over SSH 插件 配置远程服务器 创…...

【数学建模】【2024年】【第40届】【MCM/ICM】【D题 五大湖的水位控制问题】【解题思路】

一、题目 &#xff08;一&#xff09; 赛题原文 2024 ICM Problem D: Great Lakes Water Problem Background The Great Lakes of the United States and Canada are the largest group of freshwater lakes in the world. The five lakes and connecting waterways const…...

【开源】JAVA+Vue+SpringBoot实现公司货物订单管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 客户管理模块2.2 商品维护模块2.3 供应商管理模块2.4 订单管理模块 三、系统展示四、核心代码4.1 查询供应商信息4.2 新增商品信息4.3 查询客户信息4.4 新增订单信息4.5 添加跟进子订单 五、免责说明 一、摘要 1.1 项目…...

###C语言程序设计-----C语言学习(12)#进制间转换,十进制,二进制,八进制,十六进制

前言&#xff1a;感谢您的关注哦&#xff0c;我会持续更新编程相关知识&#xff0c;愿您在这里有所收获。如果有任何问题&#xff0c;欢迎沟通交流&#xff01;期待与您在学习编程的道路上共同进步。 计算机处理的所有信息都以二进制形式表示&#xff0c;即数据的存储和计算都采…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...