当前位置: 首页 > news >正文

Python算法题集_LRU 缓存

 Python算法题集_LRU 缓存

  • 题146:LRU 缓存
  • 1. 示例说明
  • 2. 题目解析
    • - 题意分解
    • - 优化思路
    • - 测量工具
  • 3. 代码展开
    • 1) 标准求解【队列+字典】
    • 2) 改进版一【有序字典】
    • 3) 改进版二【双向链表+字典】
  • 4. 最优算法

本文为Python算法题集之一的代码示例

题146:LRU 缓存

1. 示例说明

  • 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

    实现 LRUCache 类:

    • LRUCache(int capacity)正整数 作为容量 capacity 初始化 LRU 缓存
    • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
    • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

    函数 getput 必须以 O(1) 的平均时间复杂度运行。

    示例:

    输入
    ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
    [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
    输出
    [null, null, null, 1, null, -1, null, -1, 3, 4]解释
    LRUCache lRUCache = new LRUCache(2);
    lRUCache.put(1, 1); // 缓存是 {1=1}
    lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
    lRUCache.get(1);    // 返回 1
    lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
    lRUCache.get(2);    // 返回 -1 (未找到)
    lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
    lRUCache.get(1);    // 返回 -1 (未找到)
    lRUCache.get(3);    // 返回 3
    lRUCache.get(4);    // 返回 4
    

    提示:

    • 1 <= capacity <= 3000
    • 0 <= key <= 10000
    • 0 <= value <= 105
    • 最多调用 2 * 105getput

2. 题目解析

- 题意分解

  1. 本题为设计一个整形缓存类,可以指定缓存大小
  2. 基本的设计思路是采用队列控制使用次序,字典进行缓存【哈希】

- 优化思路

  1. 通常优化:减少循环层次

  2. 通常优化:增加分支,减少计算集

  3. 通常优化:采用内置算法来提升计算速度

  4. 分析题目特点,分析最优解

    1. 可以考虑采用有序字典设计缓存类

    2. 可以考虑采用双向链表设计使用队列,缓存还是采用字典


- 测量工具

  • 本地化测试说明:LeetCode网站测试运行时数据波动很大,因此需要本地化测试解决这个问题
  • CheckFuncPerf(本地化函数用时和内存占用测试模块)已上传到CSDN,地址:Python算法题集_检测函数用时和内存占用的模块
  • 本题本地化超时测试用例自己生成,详见【最优算法章节】

3. 代码展开

1) 标准求解【队列+字典】

队列控制使用次序,字典保存键值对

勉强通关,超过05%在这里插入图片描述

import CheckFuncPerf as cfpclass LRUCache_base:
def __init__(self, capacity):self.queue, self.dict, self.capacity, self.queuelen = [], {}, capacity, 0
def get(self, key):if key in self.queue:self.queue.remove(key)self.queue.append(key)return self.dict[key]else:return -1
def put(self, key, value):if key in self.queue:self.queue.remove(key)else:if self.queuelen == self.capacity:self.dict.pop(self.queue.pop(0))else:self.queuelen += 1self.queue.append(key)self.dict[key] = valutmpLRUCache = LRUCache_base(5)
result = cfp.getTimeMemoryStr(testLRUCache, tmpLRUCache, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testLRUCache 的运行时间为 561.12 ms;内存使用量为 4.00 KB 执行结果 = 99

2) 改进版一【有序字典】

采用有序字典【Python3.6之后支持】,同时支持使用顺序和保存键值对

性能卓越,超越93%在这里插入图片描述

import CheckFuncPerf as cfpclass LRUCache_ext1:def __init__(self, capacity):self.data = dict()self.capacity = capacitydef get(self, key):keyval = self.data.get(key, -1)if keyval != -1:self.data.pop(key)self.data[key] = keyvalreturn keyvaldef put(self, key, value)if key in self.data:self.data.pop(key)self.data[key] = valueelse:if len(self.data) < self.capacity:self.data[key] = valueelse:firstpop = next(iter(self.data))self.data.pop(firstpop)self.data[key] = valuetmpLRUCache = LRUCache_ext1(5)
result = cfp.getTimeMemoryStr(testLRUCache, tmpLRUCache, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testLRUCache 的运行时间为 420.10 ms;内存使用量为 0.00 KB 执行结果 = 99

3) 改进版二【双向链表+字典】

采用双向链表维护使用顺序,字典保存键值对,要首先定义双向链表类

性能卓越,超过92%在这里插入图片描述

import CheckFuncPerf as cfpclass ListNodeDouble:def __init__(self, key=None, value=None):self.key = keyself.value = valueself.prev = Noneself.next = None
class LRUCache_ext2:def __init__(self, capacity):self.capacity = capacityself.dict = {}self.head = ListNodeDouble()self.tail = ListNodeDouble()self.head.next = self.tailself.tail.prev = self.headdef move_to_tail(self, key):tmpnode = self.dict[key]tmpnode.prev.next = tmpnode.nexttmpnode.next.prev = tmpnode.prevtmpnode.prev = self.tail.prevtmpnode.next = self.tailself.tail.prev.next = tmpnodeself.tail.prev = tmpnodedef get(self, key: int):if key in self.dict:self.move_to_tail(key)result = self.dict.get(key, -1)if result == -1:return resultelse:return result.valuedef put(self, key, value):if key in self.dict:self.dict[key].value = valueself.move_to_tail(key)else:if len(self.dict) == self.capacity:self.dict.pop(self.head.next.key)self.head.next = self.head.next.nextself.head.next.prev = self.headnewkeyval = ListNodeDouble(key, value)self.dict[key] = newkeyvalnewkeyval.prev = self.tail.prevnewkeyval.next = self.tailself.tail.prev.next = newkeyvalself.tail.prev = newkeyvaltmpLRUCache = LRUCache_ext2(5)
result = cfp.getTimeMemoryStr(testLRUCache, tmpLRUCache, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 运行结果
函数 testLRUCache 的运行时间为 787.18 ms;内存使用量为 0.00 KB 执行结果 = 99

4. 最优算法

根据本地日志分析,最优算法为第2种方式【有序字典】LRUCache_ext1

def testLRUCache(lrucache, actiions):for act in actiions:if len(act) > 1:lrucache.put(act[0], act[1])else:lrucache.get(act[0])return 99
import random
actions = []
iLen = 1000000
for iIdx in range(10):actions.append([iIdx, random.randint(1, 10)])
iturn = 0
for iIdx in range(iLen):if iturn >= 2:actions.append([random.randint(1,10)])else:actions.append([random.randint(1,10), random.randint(1, 1000)])iturn += 1if iturn >= 3:iturn = 0
tmpLRUCache = LRUCache_base(5)
result = cfp.getTimeMemoryStr(testLRUCache, tmpLRUCache, actions)
print(result['msg'], '执行结果 = {}'.format(result['result']))# 算法本地速度实测比较
函数 testLRUCache 的运行时间为 561.12 ms;内存使用量为 4.00 KB 执行结果 = 99
函数 testLRUCache 的运行时间为 420.10 ms;内存使用量为 0.00 KB 执行结果 = 99
函数 testLRUCache 的运行时间为 787.18 ms;内存使用量为 0.00 KB 执行结果 = 99

一日练,一日功,一日不练十日空

may the odds be ever in your favor ~

相关文章:

Python算法题集_LRU 缓存

Python算法题集_LRU 缓存 题146&#xff1a;LRU 缓存1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【队列字典】2) 改进版一【有序字典】3) 改进版二【双向链表字典】 4. 最优算法 本文为Python算法题集之一的代码示例 题146&#xff1a;LRU …...

局部加权回归

局部加权回归&#xff08;Local Weighted Regression&#xff09;是一种非参数回归方法&#xff0c;用于解决线性回归模型无法很好拟合非线性数据的问题。它通过给不同的样本赋予不同的权重&#xff0c;使得在拟合模型时更加关注靠近目标点附近的样本数据。 局部加权回归的基本…...

国内国外最好的数据恢复软件评测,哪种数据恢复软件最有效?

随着数字和商业格局在多个领域不断发展&#xff0c;变得更加依赖数据&#xff0c;威胁数据的努力也同样存在。 计算机病毒、勒索软件和恶意软件是导致数据丢失的主要威胁&#xff0c;可能会让您的组织陷入停机或严重影响您的工作效率。而解决这个问题的方法就是数据恢复。 什么…...

bugku 1

Flask_FileUpload 文件上传 先随便传个一句话木马 看看回显 果然不符合规定 而且发现改成图片什么的都不行 查看页面源代码&#xff0c;发现提示 那应该就要用python命令才行 试试ls 类型要改成图片 cat /flag 好像需要密码 bp爆破 根据提示&#xff0c;我们先抓包 爆破 …...

C++ bfs再探迷宫游戏(五十五)【第二篇】

今天我们用bfs解决迷宫游戏。 1.再探迷宫游戏 前面我们已经接触过了迷宫游戏&#xff0c;并且学会了如何使用 DFS 来解决迷宫最短路问题。用 DFS 求解迷宫最短路有一个很大的缺点&#xff0c;需要枚举所有可能的路径&#xff0c;读入的地图一旦很大&#xff0c;可能的搜索方案…...

【Spring原理进阶】SpringMVC调用链+JSP模板应用讲解

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《Spring 狂野之旅&#xff1a;底层原理高级进阶》 &#x1f680…...

23种计模式之Python/Go实现

目录 设计模式what?why?设计模式&#xff1a;设计模式也衍生出了很多的新的种类&#xff0c;不局限于这23种创建类设计模式&#xff08;5种&#xff09;结构类设计模式&#xff08;7种&#xff09;行为类设计模式&#xff08;11种&#xff09; 六大设计原则开闭原则里氏替换原…...

Qt可视化大屏布局

科技大屏现在非常流行&#xff0c;这里分享一下某个项目的大屏布局&#xff08;忘了源码是哪个博主的了&#xff09; 展示 这个界面整体是垂直布局&#xff0c;分为两个部分&#xff0c;标题是一个部分&#xff0c;然后下面的整体是一个layout布局&#xff0c;为另外一部分。 l…...

re:从0开始的CSS之旅 14. 显示模式的切换

1. 两个属性 display 属性可以用于转换元素的显示模式 可选值&#xff1a; block 转换为块元素 inline 转换为行内元素 inline-block 转换为行内块元素 none 不显示元素&#xff0c;并且不占用元素的位置 visibility 属性用于设置元素是否显示 可选值&#xff1a; visible 显示…...

K8S系列文章之 [Alpine基础环境配置]

用户手册&#xff1a;Alpine User Handbook 官方WIKI&#xff1a;Alpine Linux WIKI 安装 安装的实际逻辑是通过 setup-alpine​ 脚本去调用其他功能的脚本进行配置&#xff0c;可以通过 vi 查看脚本。如果某个部分安装失败&#xff0c;可退出后单独再次执行。通过镜像文件&a…...

单页404源码

<!doctype html> <html> <head> <meta charset"utf-8"> <title>简约 404错误页</title><link rel"shortcut icon" href"./favicon.png"><style> import url("https://fonts.googleapis.co…...

MySQL-运维

一、日志 1.错误日志 错误日志是MySQL中最重要的日志之一&#xff0c;它记录了当mysql启动和停止时&#xff0c;以及服务器在运行过程中发生任何严重错误时的相关性息。当数据库出现任何故障导致无法正常使用时&#xff0c;建议首先查看此日志。 该日志是默认开启的&#xf…...

Waymo数据集下载与使用

在撰写论文时&#xff0c;接触到一个自动驾驶数据集Waymo Dataset 论文链接为&#xff1a;https://arxiv.org/abs/1912.04838v7 项目链接为&#xff1a;https://github.com/waymo-research/waymo-open-dataset 数据集链接为&#xff1a;https://waymo.com/open waymo提供了两种…...

蓝桥杯每日一题----素数筛

素数筛 素数筛的作用是筛选出[2,N]范围内的所有素数&#xff0c;本次主要讲解两种方法&#xff0c;分别是埃氏筛和欧拉筛。证明时会提到唯一分解定理&#xff0c;如果不知道的小伙伴可以先去学一学&#xff0c;那我们开始啦&#xff01; 1.埃氏筛 主要思想&#xff1a;当找到…...

20240212请问如何将B站下载的软字幕转换成为SRT格式?

20240212请问如何将B站下载的软字幕转换成为SRT格式&#xff1f; 2024/2/12 12:47 百度搜索&#xff1a;字幕 json 转 srt json srt https://blog.csdn.net/a_wh_white/article/details/120687363?share_token2640663e-f468-4737-9b55-73c808f5dcf0 https://blog.csdn.net/a_w…...

《CSS 简易速速上手小册》第6章:高级 CSS 技巧(2024 最新版)

文章目录 6.1 使用 CSS 变量进行设计&#xff1a;魔法配方的调配6.1.1 基础知识6.1.2 重点案例&#xff1a;创建可定制的主题6.1.3 拓展案例 1&#xff1a;响应式字体大小6.1.4 拓展案例 2&#xff1a;使用 CSS 变量创建动态阴影效果 6.2 calc(), min(), max() 等函数的应用&am…...

2024-02-11 多进程、多线程 work

1. 创建一个多进程服务器和多线程服务器 a. 多进程 #include<myhead.h> #define PORT 9999 //端口号 #define IP "192.168.125.113" //IP地址//定义信号处理函数&#xff0c;用于回收僵尸进程 void handler(int signo) {if(signo S…...

详解结构体内存对齐及结构体如何实现位段~

目录 ​编辑 一&#xff1a;结构体内存对齐 1.1对齐规则 1.2.为什么存在内存对齐 1.3修改默认对齐数 二.结构体实现位段 2.1什么是位段 2.2位段的内存分配 2.3位段的跨平台问题 2.4位段的应用 2.5位段使用的注意事项 三.完结散花 悟已往之不谏&#xff0c;知来者犹可…...

Linux网络编程——tcp套接字

文章目录 主要代码关于构造listen监听accepttelnet测试读取信息掉线重连翻译服务器演示 本章Gitee仓库&#xff1a;tcp套接字 主要代码 客户端&#xff1a; #pragma once#include"Log.hpp"#include<iostream> #include<cstring>#include<sys/wait.h…...

【计算机网络】协议层次及其服务模型

协议栈&#xff08;protocol stack&#xff09; 物理层链路层网络层运输层应用层我们自顶向下&#xff0c;所以从应用层开始探究应用层 协议 HTTP 提供了WEB文档的请求和传送SMTP 提供电子邮件报文的传输FTP 提供两个端系统之间的文件传输报文&#xff08;message&#xff09;是…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...

统计按位或能得到最大值的子集数目

我们先来看题目描述&#xff1a; 给你一个整数数组 nums &#xff0c;请你找出 nums 子集 按位或 可能得到的 最大值 &#xff0c;并返回按位或能得到最大值的 不同非空子集的数目 。 如果数组 a 可以由数组 b 删除一些元素&#xff08;或不删除&#xff09;得到&#xff0c;…...