当前位置: 首页 > news >正文

C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码

本文发布矩阵(Matrix)的一些初级算法。

一、矩阵的行列式(Determinant)

矩阵行列式是指矩阵的全部元素构成的行列式,设A=(a)是数域P上的一个n阶矩阵,则所有A=(a)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A|=|A|。
 

/// <summary>
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// </summary>
/// <param name="matrix"></param>
/// <param name="temp"></param>
/// <param name="p"></param>
/// <param name="q"></param>
/// <param name="n"></param>
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{
    int i = 0;
    int j = 0;

    for (int row = 0; row < n; row++)
    {
        for (int col = 0; col < n; col++)
        {
            if (row != p && col != q)
            {
                temp[i, j++] = matrix[row, col];
                if (j == (n - 1))
                {
                    j = 0;
                    i++;
                }
            }
        }
    }
}

/// <summary>
/// 求矩阵行列式(递归算法)
/// </summary>
/// <param name="N"></param>
/// <param name="matrix"></param>
/// <param name="n"></param>
/// <returns></returns>
public static double Determinant(int N, double[,] matrix, int n)
{
    if (n == 1)
    {
        return matrix[0, 0];
    }

    double D = 0.0;
    double[,] temp = new double[N, N];
    int sign = 1;
    for (int f = 0; f < n; f++)
    {
        BlockCofactor(matrix, ref temp, 0, f, n);
        D += sign * matrix[0, f] * Determinant(N, temp, n - 1);
        sign = -sign;
    }
    return D;
}
 

/// <summary>
/// 计算 A[p,q] 位于 [,]temp 的块辅因子
/// </summary>
/// <param name="matrix"></param>
/// <param name="temp"></param>
/// <param name="p"></param>
/// <param name="q"></param>
/// <param name="n"></param>
private static void BlockCofactor(double[,] matrix, ref double[,] temp, int p, int q, int n)
{int i = 0;int j = 0;for (int row = 0; row < n; row++){for (int col = 0; col < n; col++){if (row != p && col != q){temp[i, j++] = matrix[row, col];if (j == (n - 1)){j = 0;i++;}}}}
}/// <summary>
/// 求矩阵行列式(递归算法)
/// </summary>
/// <param name="N"></param>
/// <param name="matrix"></param>
/// <param name="n"></param>
/// <returns></returns>
public static double Determinant(int N, double[,] matrix, int n)
{if (n == 1){return matrix[0, 0];}double D = 0.0;double[,] temp = new double[N, N];int sign = 1;for (int f = 0; f < n; f++){BlockCofactor(matrix, ref temp, 0, f, n);D += sign * matrix[0, f] * Determinant(N, temp, n - 1);sign = -sign;}return D;
}

二、矩阵的伴随矩阵(Adjoint Matrix)

一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
 

/// <summary>
/// 伴随矩阵
/// </summary>
/// <param name="A"></param>
/// <param name="adj"></param>
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{
    int N = matrix.GetLength(0);
    adjoint = new double[N, N];

    if (N == 1)
    {
        adjoint[0, 0] = 1.0;
        return;
    }

    int sign = 1;
    double[,] temp = new double[N, N];
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            BlockCofactor(matrix, ref temp, i, j, N);
            sign = ((i + j) % 2 == 0) ? 1 : -1;
            adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));
        }
    }
}

/// <summary>
/// 伴随矩阵
/// </summary>
/// <param name="A"></param>
/// <param name="adj"></param>
public static void Adjoint(double[,] matrix, out double[,] adjoint)
{int N = matrix.GetLength(0);adjoint = new double[N, N];if (N == 1){adjoint[0, 0] = 1.0;return;}int sign = 1;double[,] temp = new double[N, N];for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){BlockCofactor(matrix, ref temp, i, j, N);sign = ((i + j) % 2 == 0) ? 1 : -1;adjoint[j, i] = (sign) * (Determinant(N, temp, N - 1));}}
}

三、矩阵的逆矩阵(Inverse Matrix)

设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。矩阵求逆,即求矩阵的逆矩阵。矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷。逆矩阵又是矩阵理论的很重要的内容,逆矩阵的求法自然也就成为线性代数研究的主要内容之一。

/// <summary>
/// 矩阵求逆
/// </summary>
/// <param name="A"></param>
/// <param name="inverse"></param>
/// <returns></returns>
public static bool Inverse(double[,] matrix, out double[,] inverse)
{
    int N = matrix.GetLength(0);
    inverse = new double[N, N];

    double det = Determinant(N, matrix, N);
    if (det == 0)
    {
        return false;
    }

    Adjoint(matrix, out double[,] adj);

    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
        {
            inverse[i, j] = adj[i, j] / (double)det;
        }
    }
    return true;
}
 

/// <summary>
/// 矩阵求逆
/// </summary>
/// <param name="A"></param>
/// <param name="inverse"></param>
/// <returns></returns>
public static bool Inverse(double[,] matrix, out double[,] inverse)
{int N = matrix.GetLength(0);inverse = new double[N, N];double det = Determinant(N, matrix, N);if (det == 0){return false;}Adjoint(matrix, out double[,] adj);for (int i = 0; i < N; i++){for (int j = 0; j < N; j++){inverse[i, j] = adj[i, j] / (double)det;}}return true;
}

演算代码:

private void button1_Click(object sender, EventArgs e)
{
    double[,] A = { 
        {5, -2, 2, 7},
        {1, 0, 0, 3},
        {-3, 1, 5, 0},
        {3, -1, -9, 4}
    };

    double d = Algorithm_Gallery.Determinant(4, A, 4);

    StringBuilder sb = new StringBuilder();
    sb.Append(Welcome());
    sb.AppendLine("1、<b>原始矩阵</b>(Source Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(A));
    sb.AppendLine("行列式(Determinant)=" + d + "<br>");
    
    Algorithm_Gallery.Adjoint(A, out double[,] adj);
    sb.AppendLine("<br>2、<b>伴随矩阵</b>(Adjoint Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(adj));
    
    Algorithm_Gallery.Inverse(A, out double[,] inv);
    sb.AppendLine("<br>3、<b>逆矩阵</b>(Inverse Matrix):<br>");
    sb.Append(Algorithm_Gallery.ToHtml(inv));
    sb.Append(Bye());
    webBrowser1.DocumentText = sb.ToString();
}

private void button1_Click(object sender, EventArgs e)
{double[,] A = { {5, -2, 2, 7},{1, 0, 0, 3},{-3, 1, 5, 0},{3, -1, -9, 4}};double d = Algorithm_Gallery.Determinant(4, A, 4);StringBuilder sb = new StringBuilder();sb.Append(Welcome());sb.AppendLine("1、<b>原始矩阵</b>(Source Matrix):<br>");sb.Append(Algorithm_Gallery.ToHtml(A));sb.AppendLine("行列式(Determinant)=" + d + "<br>");Algorithm_Gallery.Adjoint(A, out double[,] adj);sb.AppendLine("<br>2、<b>伴随矩阵</b>(Adjoint Matrix):<br>");sb.Append(Algorithm_Gallery.ToHtml(adj));Algorithm_Gallery.Inverse(A, out double[,] inv);sb.AppendLine("<br>3、<b>逆矩阵</b>(Inverse Matrix):<br>");sb.Append(Algorithm_Gallery.ToHtml(inv));sb.Append(Bye());webBrowser1.DocumentText = sb.ToString();
}

 打印矩阵的代码:


public static string ToHtml(double[,] y)
{
    int m = y.GetLength(0);
    int n = y.GetLength(1);
    StringBuilder sb = new StringBuilder();
    sb.AppendLine("<style>");
    sb.AppendLine("td { padding:5px;text-align:right; }");
    sb.AppendLine("</style>");
    sb.AppendLine("<table width='100%' border=1 bordercolor='#999999' style='border-collapse:collapse;'>");
    for (int i = 0; i < m; i++)
    {
        sb.AppendLine("<tr>");
        for (int j = 0; j < n; j++)
        {
            sb.AppendLine("<td>" + String.Format("{0:F8}", y[i, j]) + "</td>");
        }
        sb.AppendLine("</tr>");
    }
    sb.AppendLine("</table>");
    return sb.ToString();
}
 

————————————————————————————————

POWER BY  TRUFFER.CN 50018.COM 315SOFT.COM

public static string ToHtml(double[,] y)
{int m = y.GetLength(0);int n = y.GetLength(1);StringBuilder sb = new StringBuilder();sb.AppendLine("<style>");sb.AppendLine("td { padding:5px;text-align:right; }");sb.AppendLine("</style>");sb.AppendLine("<table width='100%' border=1 bordercolor='#999999' style='border-collapse:collapse;'>");for (int i = 0; i < m; i++){sb.AppendLine("<tr>");for (int j = 0; j < n; j++){sb.AppendLine("<td>" + String.Format("{0:F8}", y[i, j]) + "</td>");}sb.AppendLine("</tr>");}sb.AppendLine("</table>");return sb.ToString();
}

相关文章:

C#,数值计算,矩阵的行列式(Determinant)、伴随矩阵(Adjoint)与逆矩阵(Inverse)的算法与源代码

本文发布矩阵&#xff08;Matrix&#xff09;的一些初级算法。 一、矩阵的行列式&#xff08;Determinant&#xff09; 矩阵行列式是指矩阵的全部元素构成的行列式&#xff0c;设A(a)是数域P上的一个n阶矩阵&#xff0c;则所有A(a)中的元素组成的行列式称为矩阵A的行列式&…...

人工智能|推荐系统——基于tensorflow的个性化电影推荐系统实战(有前端)

代码下载&#xff1a; 基于tensorflow的个性化电影推荐系统实战(有前端).zip资源-CSDN文库 项目简介&#xff1a; dl_re_web : Web 项目的文件夹re_sys&#xff1a; Web app model&#xff1a;百度云下载之后&#xff0c;把model放到该文件夹下recommend&#xff1a; 网络模型相…...

Hive SQL编译成MapReduce任务的过程

目录 一、架构及组件介绍 1.1 Hive底层架构 1.2 Hive组件 1.3 Hive与Hadoop交互过程 二、Hive SQL 编译成MR任务的流程 2.1 HQL转换为MR源码整体流程介绍 2.2 程序入口—CliDriver 2.3 HQL编译成MR任务的详细过程—Driver 2.3.1 将HQL语句转换成AST抽象语法树 词法、语…...

【C++】快速上手map、multimap、set、multiset

文章目录 一、前言二、set / multiset1. 常见应用2. 核心操作 三、map / multimap1. 常见应用2. 核心操作 一、前言 S T L STL STL 中的关联式容器分为树型结构和哈希结构&#xff0c;树型结构主要有四种&#xff1a; s e t set set、 m u l t i s e t multiset multiset、 m a…...

【分享】图解ADS+JLINK调试ARM

文章是对LPC2148而写的&#xff0c;但是对三星的44B0芯片同样适用&#xff0c;只需要在选择时将相应的CPU选择的S3C44B0就可以了。 JLINK在ADS下调试心得 前两天一个客户用jlink在ADS下调试LPC2148总报错&#xff0c;这个错误我之前在调试LPC2200的时候也碰到过&#xff0c;后…...

反无人机系统技术分析,无人机反制技术理论基础,无人机技术详解

近年来&#xff0c;经过大疆、parrot、3d robotics等公司不断的努力&#xff0c;具有强大功能的消费级无人机价格不断降低&#xff0c;操作简便性不断提高&#xff0c;无人机正快速地从尖端的军用设备转入大众市场&#xff0c;成为普通民众手中的玩具。 然而&#xff0c;随着消…...

Kotlin和Java 单例模式

Java 和Kotlin的单例模式其实很像&#xff0c;只是Kotlin一部分单例可以用对象类和委托lazy来实现 Java /*** 懒汉式&#xff0c;线程不安全*/ class Singleton {private static Singleton instance;private Singleton() {}public static Singleton getInstance() {if (insta…...

软考 系统分析师系列知识点之信息系统战略规划方法(9)

接前一篇文章&#xff1a;软考 系统分析师系列知识点之信息系统战略规划方法&#xff08;8&#xff09; 所属章节&#xff1a; 第7章. 企业信息化战略与实施 第4节. 信息系统战略规划方法 7.4.5 信息工程方法 信息工程&#xff08;Information Engineering&#xff0c;IE&…...

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}

为什么要示例演绎&#xff1f; 既然有了官方指南&#xff0c;咱们在官方指南上看看就可以了&#xff0c;为什么还要写示例演绎的文章呢&#xff1f; 其实对于初步了解TensorFlow的小伙伴们而言&#xff0c;示例演绎才是最重要的。 官方文档已经假定了您已经具备了相当合适的…...

node - 与数据库交互

在Web开发中,与数据库交互是常见的需求,用于持久化存储、检索和操作数据。不同的后端技术和数据库类型(如关系型数据库和非关系型数据库)有着不同的交互方式。下面介绍几种常见的数据库交互方法。 关系型数据库 关系型数据库(如MySQL、PostgreSQL、SQLite)使用结构化查…...

速盾:2024年cdn在5g时代重要吗

在2024年&#xff0c;随着5G技术的普及与应用&#xff0c;内容分发网络&#xff08;Content Delivery Network&#xff0c;CDN&#xff09;在数字化时代中的重要性将进一步巩固和扩大。CDN是一种用于快速、高效地分发网络内容的基础设施&#xff0c;它通过将内容部署在全球各地…...

微信小程序(四十一)wechat-http的使用

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.模块下载 2.模块的使用 在终端输入npm install wechat-http 没有安装成功vue的先看之前的一篇 微信小程序&#xff08;二十&#xff09;Vant组件库的配置- 如果按以上的成功配置出现如下报错先输入以下语句 …...

所有设计模式大全及学习链接

文章目录 创建型设计模式结构型设计模式行为型设计模式 创建型设计模式 一种创建对象的设计模式&#xff0c;它们提供了一种灵活的方式来创建对象&#xff0c;同时隐藏了对象的创建细节。以下是常见的创建型设计模式&#xff1a; 工厂方法模式&#xff08;Factory Method Patte…...

【Java程序设计】【C00264】基于Springboot的原创歌曲分享平台(有论文)

基于Springboot的原创歌曲分享平台&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的原创歌曲分享平台 本系统分为平台功能模块、管理员功能模块以及用户功能模块。 平台功能模块&#xff1a;在平台首页可以查看首…...

2024年,要特别注意这两个方位

家居风水对每个家庭都非常重要&#xff0c;可在无形中影响到人们的事业、财富以及健康运势。俗话说&#xff1a;“风水轮流转”&#xff0c;2024年为甲辰龙年&#xff0c;斗转星移、九宫飞星将改变宫位&#xff0c;新一年的磁场即将启动&#xff0c;方位的吉凶也会重新变动&…...

【Chrono Engine学习总结】5-sensor-5.1-sensor基础并创建一个lidar

由于Chrono的官方教程在一些细节方面解释的并不清楚&#xff0c;自己做了一些尝试&#xff0c;做学习总结。 1、Sensor模块 Sensor模块是附加模块&#xff0c;需要单独安装。参考&#xff1a;【Chrono Engine学习总结】1-安装配置与程序运行 Sensor Module Tutorial Sensor …...

springboot/ssm学生信息管理系统Java学生在线选课考试管理系统

springboot/ssm学生信息管理系统Java学生在线选课考试管理系统 开发语言&#xff1a;Java 框架&#xff1a;springboot&#xff08;可改ssm&#xff09; vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.…...

three.js 箭头ArrowHelper的实践应用

效果&#xff1a; 代码&#xff1a; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs" style"border: 1px solid red"></div></div></el-main></…...

力扣hot2--哈希

推荐博客&#xff1a; for(auto i : v)遍历容器元素_for auto 遍历-CSDN博客 字母异位词都有一个特点&#xff1a;也就是对这个词排序之后结果会相同。所以将排序之后的string作为key&#xff0c;将排序之后能变成key的单词组vector<string>作为value。 class Solution …...

【正在更新】从零开始认识语音识别:DNN-HMM混合系统语音识别(ASR)原理

摘要 | Abstract 这是一篇对语音识别中的一种热门技术——DNN-HMM混合系统原理的透彻介绍。本文自2月10日开始撰写&#xff0c;计划一星期内写完。 1.前言 | Introduction 近期想深入了解语音识别(ASR)中隐马尔可夫模型(HMM)和深度神经网络-隐马尔可夫(DNN-HMM)混合模型&#…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...