UVA1449 Dominating Patterns 题解
UVA1449 Dominating Patterns 题解
板子题诶。
解法
AC 自动机模板题,因为数据范围比较小,所以不加拓扑排序优化建图即可通过本题。这里简单介绍一下拓扑排序优化建图。
在查找时,每次都暴力的条 f a i l fail fail 指针是很消耗时间的,查找到了一个字符串可能意味着找到了多个字符串,例如我们有两个模式串 bc
和 abc
,我们找到了串 abc
,这同时意味着我们找到了串 bc
,如果每次都去跳失配边的话效率过低,我们可以在找到一个模式串后打标记,最后进行拓扑排序求得最后的答案。
为什么可以使用拓扑排序?
因为失配边都是有向边,而失配边的起点一定比终点深度要深,而且不会存在自环。所以所有失配边所构成的图是一个有向无环图。
另外,这里建图不用真的把边都建出来,统计一下入度就行。
代码
#include<bits/stdc++.h>
namespace fast_IO
{/*** 快读快写。*/
};
using namespace fast_IO;
class AC_auto
{
private:#define LEN 1000001#define N 200int a[LEN][26],val[LEN],flag[LEN],fail[LEN],ind[LEN],cnt,tmp;int ans[N],map[N];std::deque<int> q;
public:inline AC_auto(){memset(fail,0,sizeof(fail)),memset(val,0,sizeof(val)),memset(flag,0,sizeof(flag));memset(a,0,sizeof(a)),memset(ind,0,sizeof(ind));memset(ans,0,sizeof(ans)),memset(map,0,sizeof(map));cnt=1;}inline void clear(){for(int i=0;i<=cnt;i++) memset(a[i],0,sizeof(a[i])),val[i]=flag[i]=fail[i]=ind[i]=0;memset(ans,0,sizeof(ans)),memset(map,0,sizeof(map));cnt=1;}inline void build(){for(int i=0;i<26;i++) a[0][i]=1;q.push_back(1);while(!q.empty()){tmp=q.front();q.pop_front();for(int i=0;i<26;i++)if(a[tmp][i])fail[a[tmp][i]]=a[fail[tmp]][i],ind[fail[a[tmp][i]]]++,q.push_back(a[tmp][i]);else a[tmp][i]=a[fail[tmp]][i];}}inline void add(std::string st,int pos){int now=1;for(int i=0;i<st.size();i++){if(!a[now][st[i]-'a']) a[now][st[i]-'a']=++cnt;now=a[now][st[i]-'a'];}if(!flag[now]) flag[now]=pos;map[pos]=flag[now];}inline void ask(std::string st){int now=1;for(int i=0;i<st.size();i++) now=a[now][st[i]-'a'],val[now]++;}inline void topo_sort(){for(int i=1;i<=cnt;i++) if(!ind[i]) q.push_back(i);while(!q.empty()){tmp=q.front(),q.pop_front();ans[flag[tmp]]=val[tmp],val[fail[tmp]]+=val[tmp];if(!(--ind[fail[tmp]])) q.push_back(fail[tmp]);}}inline std::vector<int> output(const int l,const int r){std::vector<int> ret;int maxi=0;for(int i=l;i<=r;i++)if(ans[map[i]]>maxi) maxi=ans[map[i]],ret.clear(),ret.push_back(i);else if(ans[map[i]]==maxi) ret.push_back(i);out<<maxi<<'\n';return ret;}
};
AC_auto ac_auto;
int n;
std::string s,t[200];
std::vector<int> v;
int main()
{while(1){in>>n;if(n==0) break;ac_auto.clear();for(int i=1;i<=n;i++) in>>t[i],ac_auto.add(t[i],i);ac_auto.build(),in>>s,ac_auto.ask(s),ac_auto.topo_sort(),v=ac_auto.output(1,n);for(int i=0;i<v.size();i++) out<<t[v[i]]<<'\n';}fwrite(Ouf,1,p3-Ouf,stdout),fflush(stdout);return 0;
}
相关文章:
UVA1449 Dominating Patterns 题解
UVA1449 Dominating Patterns 题解 板子题诶。 解法 AC 自动机模板题,因为数据范围比较小,所以不加拓扑排序优化建图即可通过本题。这里简单介绍一下拓扑排序优化建图。 在查找时,每次都暴力的条 f a i l fail fail 指针是很消耗时间的&…...

【C语言】数据结构#实现堆
目录 (一)堆 (1)堆区与数据结构的堆 (二)头文件 (三)功能实现 (1)堆的初始化 (2)堆的销毁 (3)插入数据 …...

AES加密中的CBC和ECB
目录 1.说明 2.ECB模式(base64) 3.CBC模式 4.总结 1.说明 AES是常见的对称加密算法,加密和解密使用相同的密钥,流程如下: 主要概念如下: ①明文 ②密钥 用来加密明文的密码,在对称加密算…...

【C++】类和对象(四)
前言:在类和对象中,我们走过了十分漫长的道路,今天我们将进一步学习类和对象,类和对象这块荆棘地很长,各位一起加油呀。 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:高质量&a…...
XGB-5: DART Booster
XGBoost 主要结合了大量的回归树和一个小的学习率。在这种情况下,早期添加的树是重要的,而晚期添加的树是不重要的。 Vinayak 和 Gilad-Bachrach 提出了一种将深度神经网络社区的 dropout 技术应用于梯度提升树的新方法,并在某些情况下报告了…...

HiveSQL——不使用union all的情况下进行列转行
参考文章: HiveSql一天一个小技巧:如何不使用union all 进行列转行_不 union all-CSDN博客文章浏览阅读881次,点赞5次,收藏10次。本文给出一种不使用传统UNION ALL方法进行 行转列的方法,其中方法一采用了concat_wsposexplode()方…...

Python环境下基于指数退化模型和LSTM自编码器的轴承剩余寿命预测
滚动轴承是机械设备中关键的零部件之一,其可靠性直接影响了设备的性能,所以对滚动轴承的剩余使用寿命(RUL)进行预测是十分必要的。目前,如何准确地对滚动轴承剩余使用寿命进行预测,仍是一个具有挑战的课题。对滚动轴承剩余寿命评估…...
无人机竞赛视觉算法开发流程开源计划(询问大家意见)
本科中参加过一系列的无人机机器人竞赛,像电赛、工训赛、机器人大赛这些,有一些比较常用的方案打算开源一下。现在读研了,也算是对本科的一个总结,但是还是想看看大家意见,大家有什么需求可以在评论区说,我…...

DMA直接内存访问,STM32实现高速数据传输使用配置
1、DMA运用场景 随着智能化、信息化的不断推进,嵌入式设备的数据处理量也呈现指数级增加,因此对于巨大的数据量处理的情况时,必须采取其它的方式去替CPU减负,以保证嵌入式设备性能。例如SD卡存储器和音视频、网络高速通信等其它情…...

Web安全研究(六)
文章目录 HideNoSeek: Camouflaging(隐藏) Malicious JavaScript in Benign ASTs文章结构Introjs obfuscationmethodologyExample HideNoSeek: Camouflaging(隐藏) Malicious JavaScript in Benign ASTs CCS 2019 CISPA 恶意软件领域,基于学习的系统已经非常流行&am…...

python3 中try 异常调试 raise 异常抛出
一、什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。 一般情况下,在Python无法正常处理程序时就会发生一个异常。 异常是Python对象,表示一个错误。 当Python脚本发生异常时我…...
Java中的序列化是什么?如何实现对象的序列化和反序列化?请解释Serializable接口的作用是什么?请解释transient关键字的作用是什么?为什么会使用它?
Java中的序列化是指将对象转换为字节序列的过程,以便可以在网络上传输或将其保存到持久存储介质中。反序列化则是将字节序列重新转换回对象的过程。Java提供了一种称为序列化(Serialization)的机制来实现对象的序列化和反序列化。 要实现对象…...

二维差分---三维差分算法笔记
文章目录 一.二维差分构造差分二维数组二维差分算法状态dp求b[i][j]数组的二维前缀和图解 二.三维前缀和与差分三维前缀和图解:三维差分核心公式图解:模板题 一.二维差分 给定一个原二维数组a[i][j],若要给a[i][j]中以(x1,y1)和(x2,y2)为对角线的子矩阵中每个数都加上一个常数…...

D. Divisible Pairs
思路:我们预处理出每个数分别摸上xy的值,用map存一下,然后遍历每个数,如果a b是x的倍数的话,那么他们模x的值相加为x,如果a - b是y的倍数的话,那么他们的模y的值相等。 代码: voi…...

【教程】Kotlin语言学习笔记(二)——数据类型(持续更新)
写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 【Kotlin语言学习】系列文章 第一章 《认识Kotlin》 第二章 《数据类型》 文章目录 【Kotlin语言学习】系列文章一、基本数据…...
react 插槽
问题开发当中会经常出现组件十分相似的组件,只有一部分是不同的 解决: 父组件:在引用的时候 import { Component } from "react"; import Me from "../me";const name <div>名称</div> class Shoop extends Compone…...

Linux运用fork函数创建进程
fork函数: 函数原型: pid_t fork(void); 父进程调用fork函数创建一个子进程,子进程的用户区父进程的用户区完全一样,但是内核区不完全一样;如父进程的PID和子进程的PID不一样。 返回值: RETURN VALUEO…...

Pytest测试技巧之Fixture:模块化管理测试数据
在 Pytest 测试中,有效管理测试数据是提高测试质量和可维护性的关键。本文将深入探讨 Pytest 中的 Fixture,特别是如何利用 Fixture 实现测试数据的模块化管理,以提高测试用例的清晰度和可复用性。 什么是Fixture? 在 Pytest 中&a…...
设计模式-职责链模式Chain of Responsibility
职责链模式 一、原理和实现二、实现方式1) 使用链表实现2) 使用数组实现3) 扩展 作用:复用和扩展,在实际的项目开发中比较常用。在框架开发中,我们也可以利用它们来提供框架的扩展点,能够让框架的使用者在不修改框架源码的情况下&…...

书生浦语大模型实战营-课程作业(3)
下载sentence_transformer的代码运行情况。sentence_transformer用于embedding(转向量) 本地构建持久化向量数据库。就是把txt和md文件抽取出纯文本,分割成定长(500)后转换成向量,保存到本地,称…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...