UVA1449 Dominating Patterns 题解
UVA1449 Dominating Patterns 题解
板子题诶。
解法
AC 自动机模板题,因为数据范围比较小,所以不加拓扑排序优化建图即可通过本题。这里简单介绍一下拓扑排序优化建图。
在查找时,每次都暴力的条 f a i l fail fail 指针是很消耗时间的,查找到了一个字符串可能意味着找到了多个字符串,例如我们有两个模式串 bc 和 abc,我们找到了串 abc,这同时意味着我们找到了串 bc,如果每次都去跳失配边的话效率过低,我们可以在找到一个模式串后打标记,最后进行拓扑排序求得最后的答案。
为什么可以使用拓扑排序?
因为失配边都是有向边,而失配边的起点一定比终点深度要深,而且不会存在自环。所以所有失配边所构成的图是一个有向无环图。
另外,这里建图不用真的把边都建出来,统计一下入度就行。
代码
#include<bits/stdc++.h>
namespace fast_IO
{/*** 快读快写。*/
};
using namespace fast_IO;
class AC_auto
{
private:#define LEN 1000001#define N 200int a[LEN][26],val[LEN],flag[LEN],fail[LEN],ind[LEN],cnt,tmp;int ans[N],map[N];std::deque<int> q;
public:inline AC_auto(){memset(fail,0,sizeof(fail)),memset(val,0,sizeof(val)),memset(flag,0,sizeof(flag));memset(a,0,sizeof(a)),memset(ind,0,sizeof(ind));memset(ans,0,sizeof(ans)),memset(map,0,sizeof(map));cnt=1;}inline void clear(){for(int i=0;i<=cnt;i++) memset(a[i],0,sizeof(a[i])),val[i]=flag[i]=fail[i]=ind[i]=0;memset(ans,0,sizeof(ans)),memset(map,0,sizeof(map));cnt=1;}inline void build(){for(int i=0;i<26;i++) a[0][i]=1;q.push_back(1);while(!q.empty()){tmp=q.front();q.pop_front();for(int i=0;i<26;i++)if(a[tmp][i])fail[a[tmp][i]]=a[fail[tmp]][i],ind[fail[a[tmp][i]]]++,q.push_back(a[tmp][i]);else a[tmp][i]=a[fail[tmp]][i];}}inline void add(std::string st,int pos){int now=1;for(int i=0;i<st.size();i++){if(!a[now][st[i]-'a']) a[now][st[i]-'a']=++cnt;now=a[now][st[i]-'a'];}if(!flag[now]) flag[now]=pos;map[pos]=flag[now];}inline void ask(std::string st){int now=1;for(int i=0;i<st.size();i++) now=a[now][st[i]-'a'],val[now]++;}inline void topo_sort(){for(int i=1;i<=cnt;i++) if(!ind[i]) q.push_back(i);while(!q.empty()){tmp=q.front(),q.pop_front();ans[flag[tmp]]=val[tmp],val[fail[tmp]]+=val[tmp];if(!(--ind[fail[tmp]])) q.push_back(fail[tmp]);}}inline std::vector<int> output(const int l,const int r){std::vector<int> ret;int maxi=0;for(int i=l;i<=r;i++)if(ans[map[i]]>maxi) maxi=ans[map[i]],ret.clear(),ret.push_back(i);else if(ans[map[i]]==maxi) ret.push_back(i);out<<maxi<<'\n';return ret;}
};
AC_auto ac_auto;
int n;
std::string s,t[200];
std::vector<int> v;
int main()
{while(1){in>>n;if(n==0) break;ac_auto.clear();for(int i=1;i<=n;i++) in>>t[i],ac_auto.add(t[i],i);ac_auto.build(),in>>s,ac_auto.ask(s),ac_auto.topo_sort(),v=ac_auto.output(1,n);for(int i=0;i<v.size();i++) out<<t[v[i]]<<'\n';}fwrite(Ouf,1,p3-Ouf,stdout),fflush(stdout);return 0;
}
相关文章:
UVA1449 Dominating Patterns 题解
UVA1449 Dominating Patterns 题解 板子题诶。 解法 AC 自动机模板题,因为数据范围比较小,所以不加拓扑排序优化建图即可通过本题。这里简单介绍一下拓扑排序优化建图。 在查找时,每次都暴力的条 f a i l fail fail 指针是很消耗时间的&…...
【C语言】数据结构#实现堆
目录 (一)堆 (1)堆区与数据结构的堆 (二)头文件 (三)功能实现 (1)堆的初始化 (2)堆的销毁 (3)插入数据 …...
AES加密中的CBC和ECB
目录 1.说明 2.ECB模式(base64) 3.CBC模式 4.总结 1.说明 AES是常见的对称加密算法,加密和解密使用相同的密钥,流程如下: 主要概念如下: ①明文 ②密钥 用来加密明文的密码,在对称加密算…...
【C++】类和对象(四)
前言:在类和对象中,我们走过了十分漫长的道路,今天我们将进一步学习类和对象,类和对象这块荆棘地很长,各位一起加油呀。 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:高质量&a…...
XGB-5: DART Booster
XGBoost 主要结合了大量的回归树和一个小的学习率。在这种情况下,早期添加的树是重要的,而晚期添加的树是不重要的。 Vinayak 和 Gilad-Bachrach 提出了一种将深度神经网络社区的 dropout 技术应用于梯度提升树的新方法,并在某些情况下报告了…...
HiveSQL——不使用union all的情况下进行列转行
参考文章: HiveSql一天一个小技巧:如何不使用union all 进行列转行_不 union all-CSDN博客文章浏览阅读881次,点赞5次,收藏10次。本文给出一种不使用传统UNION ALL方法进行 行转列的方法,其中方法一采用了concat_wsposexplode()方…...
Python环境下基于指数退化模型和LSTM自编码器的轴承剩余寿命预测
滚动轴承是机械设备中关键的零部件之一,其可靠性直接影响了设备的性能,所以对滚动轴承的剩余使用寿命(RUL)进行预测是十分必要的。目前,如何准确地对滚动轴承剩余使用寿命进行预测,仍是一个具有挑战的课题。对滚动轴承剩余寿命评估…...
无人机竞赛视觉算法开发流程开源计划(询问大家意见)
本科中参加过一系列的无人机机器人竞赛,像电赛、工训赛、机器人大赛这些,有一些比较常用的方案打算开源一下。现在读研了,也算是对本科的一个总结,但是还是想看看大家意见,大家有什么需求可以在评论区说,我…...
DMA直接内存访问,STM32实现高速数据传输使用配置
1、DMA运用场景 随着智能化、信息化的不断推进,嵌入式设备的数据处理量也呈现指数级增加,因此对于巨大的数据量处理的情况时,必须采取其它的方式去替CPU减负,以保证嵌入式设备性能。例如SD卡存储器和音视频、网络高速通信等其它情…...
Web安全研究(六)
文章目录 HideNoSeek: Camouflaging(隐藏) Malicious JavaScript in Benign ASTs文章结构Introjs obfuscationmethodologyExample HideNoSeek: Camouflaging(隐藏) Malicious JavaScript in Benign ASTs CCS 2019 CISPA 恶意软件领域,基于学习的系统已经非常流行&am…...
python3 中try 异常调试 raise 异常抛出
一、什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行。 一般情况下,在Python无法正常处理程序时就会发生一个异常。 异常是Python对象,表示一个错误。 当Python脚本发生异常时我…...
Java中的序列化是什么?如何实现对象的序列化和反序列化?请解释Serializable接口的作用是什么?请解释transient关键字的作用是什么?为什么会使用它?
Java中的序列化是指将对象转换为字节序列的过程,以便可以在网络上传输或将其保存到持久存储介质中。反序列化则是将字节序列重新转换回对象的过程。Java提供了一种称为序列化(Serialization)的机制来实现对象的序列化和反序列化。 要实现对象…...
二维差分---三维差分算法笔记
文章目录 一.二维差分构造差分二维数组二维差分算法状态dp求b[i][j]数组的二维前缀和图解 二.三维前缀和与差分三维前缀和图解:三维差分核心公式图解:模板题 一.二维差分 给定一个原二维数组a[i][j],若要给a[i][j]中以(x1,y1)和(x2,y2)为对角线的子矩阵中每个数都加上一个常数…...
D. Divisible Pairs
思路:我们预处理出每个数分别摸上xy的值,用map存一下,然后遍历每个数,如果a b是x的倍数的话,那么他们模x的值相加为x,如果a - b是y的倍数的话,那么他们的模y的值相等。 代码: voi…...
【教程】Kotlin语言学习笔记(二)——数据类型(持续更新)
写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 【Kotlin语言学习】系列文章 第一章 《认识Kotlin》 第二章 《数据类型》 文章目录 【Kotlin语言学习】系列文章一、基本数据…...
react 插槽
问题开发当中会经常出现组件十分相似的组件,只有一部分是不同的 解决: 父组件:在引用的时候 import { Component } from "react"; import Me from "../me";const name <div>名称</div> class Shoop extends Compone…...
Linux运用fork函数创建进程
fork函数: 函数原型: pid_t fork(void); 父进程调用fork函数创建一个子进程,子进程的用户区父进程的用户区完全一样,但是内核区不完全一样;如父进程的PID和子进程的PID不一样。 返回值: RETURN VALUEO…...
Pytest测试技巧之Fixture:模块化管理测试数据
在 Pytest 测试中,有效管理测试数据是提高测试质量和可维护性的关键。本文将深入探讨 Pytest 中的 Fixture,特别是如何利用 Fixture 实现测试数据的模块化管理,以提高测试用例的清晰度和可复用性。 什么是Fixture? 在 Pytest 中&a…...
设计模式-职责链模式Chain of Responsibility
职责链模式 一、原理和实现二、实现方式1) 使用链表实现2) 使用数组实现3) 扩展 作用:复用和扩展,在实际的项目开发中比较常用。在框架开发中,我们也可以利用它们来提供框架的扩展点,能够让框架的使用者在不修改框架源码的情况下&…...
书生浦语大模型实战营-课程作业(3)
下载sentence_transformer的代码运行情况。sentence_transformer用于embedding(转向量) 本地构建持久化向量数据库。就是把txt和md文件抽取出纯文本,分割成定长(500)后转换成向量,保存到本地,称…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
