当前位置: 首页 > news >正文

UVA1449 Dominating Patterns 题解

UVA1449 Dominating Patterns 题解

板子题诶。

解法

AC 自动机模板题,因为数据范围比较小,所以不加拓扑排序优化建图即可通过本题。这里简单介绍一下拓扑排序优化建图。

在查找时,每次都暴力的条 f a i l fail fail 指针是很消耗时间的,查找到了一个字符串可能意味着找到了多个字符串,例如我们有两个模式串 bcabc,我们找到了串 abc,这同时意味着我们找到了串 bc,如果每次都去跳失配边的话效率过低,我们可以在找到一个模式串后打标记,最后进行拓扑排序求得最后的答案。

为什么可以使用拓扑排序?

因为失配边都是有向边,而失配边的起点一定比终点深度要深,而且不会存在自环。所以所有失配边所构成的图是一个有向无环图。

另外,这里建图不用真的把边都建出来,统计一下入度就行。

代码

#include<bits/stdc++.h>
namespace fast_IO
{/*** 快读快写。*/
};
using namespace fast_IO;
class AC_auto
{
private:#define LEN 1000001#define N 200int a[LEN][26],val[LEN],flag[LEN],fail[LEN],ind[LEN],cnt,tmp;int ans[N],map[N];std::deque<int> q;
public:inline AC_auto(){memset(fail,0,sizeof(fail)),memset(val,0,sizeof(val)),memset(flag,0,sizeof(flag));memset(a,0,sizeof(a)),memset(ind,0,sizeof(ind));memset(ans,0,sizeof(ans)),memset(map,0,sizeof(map));cnt=1;}inline void clear(){for(int i=0;i<=cnt;i++) memset(a[i],0,sizeof(a[i])),val[i]=flag[i]=fail[i]=ind[i]=0;memset(ans,0,sizeof(ans)),memset(map,0,sizeof(map));cnt=1;}inline void build(){for(int i=0;i<26;i++) a[0][i]=1;q.push_back(1);while(!q.empty()){tmp=q.front();q.pop_front();for(int i=0;i<26;i++)if(a[tmp][i])fail[a[tmp][i]]=a[fail[tmp]][i],ind[fail[a[tmp][i]]]++,q.push_back(a[tmp][i]);else a[tmp][i]=a[fail[tmp]][i];}}inline void add(std::string st,int pos){int now=1;for(int i=0;i<st.size();i++){if(!a[now][st[i]-'a']) a[now][st[i]-'a']=++cnt;now=a[now][st[i]-'a'];}if(!flag[now]) flag[now]=pos;map[pos]=flag[now];}inline void ask(std::string st){int now=1;for(int i=0;i<st.size();i++) now=a[now][st[i]-'a'],val[now]++;}inline void topo_sort(){for(int i=1;i<=cnt;i++) if(!ind[i]) q.push_back(i);while(!q.empty()){tmp=q.front(),q.pop_front();ans[flag[tmp]]=val[tmp],val[fail[tmp]]+=val[tmp];if(!(--ind[fail[tmp]])) q.push_back(fail[tmp]);}}inline std::vector<int> output(const int l,const int r){std::vector<int> ret;int maxi=0;for(int i=l;i<=r;i++)if(ans[map[i]]>maxi) maxi=ans[map[i]],ret.clear(),ret.push_back(i);else if(ans[map[i]]==maxi) ret.push_back(i);out<<maxi<<'\n';return ret;}
};
AC_auto ac_auto;
int n;
std::string s,t[200];
std::vector<int> v;
int main()
{while(1){in>>n;if(n==0) break;ac_auto.clear();for(int i=1;i<=n;i++) in>>t[i],ac_auto.add(t[i],i);ac_auto.build(),in>>s,ac_auto.ask(s),ac_auto.topo_sort(),v=ac_auto.output(1,n);for(int i=0;i<v.size();i++) out<<t[v[i]]<<'\n';}fwrite(Ouf,1,p3-Ouf,stdout),fflush(stdout);return 0;
}

相关文章:

UVA1449 Dominating Patterns 题解

UVA1449 Dominating Patterns 题解 板子题诶。 解法 AC 自动机模板题&#xff0c;因为数据范围比较小&#xff0c;所以不加拓扑排序优化建图即可通过本题。这里简单介绍一下拓扑排序优化建图。 在查找时&#xff0c;每次都暴力的条 f a i l fail fail 指针是很消耗时间的&…...

【C语言】数据结构#实现堆

目录 &#xff08;一&#xff09;堆 &#xff08;1&#xff09;堆区与数据结构的堆 &#xff08;二&#xff09;头文件 &#xff08;三&#xff09;功能实现 &#xff08;1&#xff09;堆的初始化 &#xff08;2&#xff09;堆的销毁 &#xff08;3&#xff09;插入数据 …...

AES加密中的CBC和ECB

目录 1.说明 2.ECB模式&#xff08;base64&#xff09; 3.CBC模式 4.总结 1.说明 AES是常见的对称加密算法&#xff0c;加密和解密使用相同的密钥&#xff0c;流程如下&#xff1a; 主要概念如下&#xff1a; ①明文 ②密钥 用来加密明文的密码&#xff0c;在对称加密算…...

【C++】类和对象(四)

前言&#xff1a;在类和对象中&#xff0c;我们走过了十分漫长的道路&#xff0c;今天我们将进一步学习类和对象&#xff0c;类和对象这块荆棘地很长&#xff0c;各位一起加油呀。 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:高质量&a…...

XGB-5: DART Booster

XGBoost 主要结合了大量的回归树和一个小的学习率。在这种情况下&#xff0c;早期添加的树是重要的&#xff0c;而晚期添加的树是不重要的。 Vinayak 和 Gilad-Bachrach 提出了一种将深度神经网络社区的 dropout 技术应用于梯度提升树的新方法&#xff0c;并在某些情况下报告了…...

HiveSQL——不使用union all的情况下进行列转行

参考文章&#xff1a; HiveSql一天一个小技巧&#xff1a;如何不使用union all 进行列转行_不 union all-CSDN博客文章浏览阅读881次&#xff0c;点赞5次&#xff0c;收藏10次。本文给出一种不使用传统UNION ALL方法进行 行转列的方法,其中方法一采用了concat_wsposexplode()方…...

Python环境下基于指数退化模型和LSTM自编码器的轴承剩余寿命预测

滚动轴承是机械设备中关键的零部件之一&#xff0c;其可靠性直接影响了设备的性能&#xff0c;所以对滚动轴承的剩余使用寿命(RUL)进行预测是十分必要的。目前&#xff0c;如何准确地对滚动轴承剩余使用寿命进行预测&#xff0c;仍是一个具有挑战的课题。对滚动轴承剩余寿命评估…...

无人机竞赛视觉算法开发流程开源计划(询问大家意见)

本科中参加过一系列的无人机机器人竞赛&#xff0c;像电赛、工训赛、机器人大赛这些&#xff0c;有一些比较常用的方案打算开源一下。现在读研了&#xff0c;也算是对本科的一个总结&#xff0c;但是还是想看看大家意见&#xff0c;大家有什么需求可以在评论区说&#xff0c;我…...

DMA直接内存访问,STM32实现高速数据传输使用配置

1、DMA运用场景 随着智能化、信息化的不断推进&#xff0c;嵌入式设备的数据处理量也呈现指数级增加&#xff0c;因此对于巨大的数据量处理的情况时&#xff0c;必须采取其它的方式去替CPU减负&#xff0c;以保证嵌入式设备性能。例如SD卡存储器和音视频、网络高速通信等其它情…...

Web安全研究(六)

文章目录 HideNoSeek: Camouflaging(隐藏) Malicious JavaScript in Benign ASTs文章结构Introjs obfuscationmethodologyExample HideNoSeek: Camouflaging(隐藏) Malicious JavaScript in Benign ASTs CCS 2019 CISPA 恶意软件领域&#xff0c;基于学习的系统已经非常流行&am…...

python3 中try 异常调试 raise 异常抛出

一、什么是异常&#xff1f; 异常即是一个事件&#xff0c;该事件会在程序执行过程中发生&#xff0c;影响了程序的正常执行。 一般情况下&#xff0c;在Python无法正常处理程序时就会发生一个异常。 异常是Python对象&#xff0c;表示一个错误。 当Python脚本发生异常时我…...

Java中的序列化是什么?如何实现对象的序列化和反序列化?请解释Serializable接口的作用是什么?请解释transient关键字的作用是什么?为什么会使用它?

Java中的序列化是指将对象转换为字节序列的过程&#xff0c;以便可以在网络上传输或将其保存到持久存储介质中。反序列化则是将字节序列重新转换回对象的过程。Java提供了一种称为序列化&#xff08;Serialization&#xff09;的机制来实现对象的序列化和反序列化。 要实现对象…...

二维差分---三维差分算法笔记

文章目录 一.二维差分构造差分二维数组二维差分算法状态dp求b[i][j]数组的二维前缀和图解 二.三维前缀和与差分三维前缀和图解:三维差分核心公式图解:模板题 一.二维差分 给定一个原二维数组a[i][j],若要给a[i][j]中以(x1,y1)和(x2,y2)为对角线的子矩阵中每个数都加上一个常数…...

D. Divisible Pairs

思路&#xff1a;我们预处理出每个数分别摸上xy的值&#xff0c;用map存一下&#xff0c;然后遍历每个数&#xff0c;如果a b是x的倍数的话&#xff0c;那么他们模x的值相加为x&#xff0c;如果a - b是y的倍数的话&#xff0c;那么他们的模y的值相等。 代码&#xff1a; voi…...

【教程】Kotlin语言学习笔记(二)——数据类型(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【Kotlin语言学习】系列文章 第一章 《认识Kotlin》 第二章 《数据类型》 文章目录 【Kotlin语言学习】系列文章一、基本数据…...

react 插槽

问题开发当中会经常出现组件十分相似的组件&#xff0c;只有一部分是不同的 解决&#xff1a; 父组件:在引用的时候 import { Component } from "react"; import Me from "../me";const name <div>名称</div> class Shoop extends Compone…...

Linux运用fork函数创建进程

fork函数&#xff1a; 函数原型&#xff1a; pid_t fork(void); 父进程调用fork函数创建一个子进程&#xff0c;子进程的用户区父进程的用户区完全一样&#xff0c;但是内核区不完全一样&#xff1b;如父进程的PID和子进程的PID不一样。 返回值&#xff1a; RETURN VALUEO…...

Pytest测试技巧之Fixture:模块化管理测试数据

在 Pytest 测试中&#xff0c;有效管理测试数据是提高测试质量和可维护性的关键。本文将深入探讨 Pytest 中的 Fixture&#xff0c;特别是如何利用 Fixture 实现测试数据的模块化管理&#xff0c;以提高测试用例的清晰度和可复用性。 什么是Fixture&#xff1f; 在 Pytest 中&a…...

设计模式-职责链模式Chain of Responsibility

职责链模式 一、原理和实现二、实现方式1) 使用链表实现2) 使用数组实现3) 扩展 作用&#xff1a;复用和扩展&#xff0c;在实际的项目开发中比较常用。在框架开发中&#xff0c;我们也可以利用它们来提供框架的扩展点&#xff0c;能够让框架的使用者在不修改框架源码的情况下&…...

书生浦语大模型实战营-课程作业(3)

下载sentence_transformer的代码运行情况。sentence_transformer用于embedding&#xff08;转向量&#xff09; 本地构建持久化向量数据库。就是把txt和md文件抽取出纯文本&#xff0c;分割成定长&#xff08;500&#xff09;后转换成向量&#xff0c;保存到本地&#xff0c;称…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...