当前位置: 首页 > news >正文

ubuntu22.04@laptop OpenCV Get Started: 009_image_thresholding

ubuntu22.04@laptop OpenCV Get Started: 009_image_thresholding

  • 1. 源由
  • 2. image_thresholding应用Demo
    • 2.1 C++应用Demo
    • 2.2 Python应用Demo
  • 3. 重点分析
    • 3.1 Binary Thresholding ( THRESH_BINARY )
    • 3.2 Inverse-Binary Thresholding ( THRESH_BINARY_INV )
    • 3.3 Truncate Thresholding ( THRESH_TRUNC )
    • 3.4 Threshold to Zero ( THRESH_TOZERO )
    • 3.5 Inverted Threshold to Zero ( THRESH_TOZERO_INV )
  • 4. 总结
  • 5. 参考资料
  • 6. 补充

1. 源由

阈值过滤也是OpenCV图像最基本的操作之一。

其主要方法就是:

  1. 通过一个阈值(阈值)来判断数据的有效性
  2. 通过加强对比度来让肉眼更易识别图像

比如:一张灰度图上,当灰度相近似的时候,肉眼其实很难判断出来。但是通过阈值判断和加强,就可以非常容易的让肉眼轻易识别图形。

2. image_thresholding应用Demo

009_image_thresholding是OpenCV通过阈值对图像过滤的示例程序。

2.1 C++应用Demo

C++应用Demo工程结构:

009_image_thresholding/CPP$ tree .
.
├── CMakeLists.txt
├── image_threshold.cpp
└── threshold.png0 directories, 3 files

确认OpenCV安装路径:

$ find /home/daniel/ -name "OpenCVConfig.cmake"
/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/
/home/daniel/OpenCV/opencv/build/OpenCVConfig.cmake
/home/daniel/OpenCV/opencv/build/unix-install/OpenCVConfig.cmake$ export OpenCV_DIR=/home/daniel/OpenCV/installation/opencv-4.9.0/lib/cmake/opencv4/

C++应用Demo工程编译执行:

$ mkdir build
$ cd build
$ cmake ..
$ cmake --build . --config Release
$ cd ..
$ ./build/image_threshold

2.2 Python应用Demo

Python应用Demo工程结构:

009_image_thresholding/Python$ tree .
.
├── image_threshold.py
├── requirements.txt
└── threshold.png0 directories, 3 files

Python应用Demo工程执行:

$ workoncv-4.9.0
$ python image_threshold.py

3. 重点分析

在这里插入图片描述

3.1 Binary Thresholding ( THRESH_BINARY )

过滤规则:阈值两端极化操作

# Binary Threshold
if src(x,y) > threshdst(x,y) = maxValue
elsedst(x,y) = 0

在这里插入图片描述

C++:

// Thresholding with threshold value set 127 
threshold(src,dst,127,255, THRESH_BINARY); 

Python:

# Thresholding with threshold value set 127 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_BINARY) 

3.2 Inverse-Binary Thresholding ( THRESH_BINARY_INV )

过滤规则:阈值两端反向极化操作

# Inverse Binary Threshold
if src(x,y) > threshdst(x,y) = 0
elsedst(x,y) = maxValue

在这里插入图片描述

C++:

// Thresholding using THRESH_BINARY_INV 
threshold(src,dst,127,255, THRESH_BINARY_INV); 

Python:

# Thresholding using THRESH_BINARY_INV 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_BINARY_INV) 

3.3 Truncate Thresholding ( THRESH_TRUNC )

过滤规则:超过阈值截断操作

# Truncate Threshold
if src(x,y) > threshdst(x,y) = thresh
elsedst(x,y) = src(x,y)

在这里插入图片描述

C++:

// Thresholding using THRESH_TRUNC 
threshold(src,dst,127,255, THRESH_TRUNC); 

Python:

# Thresholding using THRESH_TRUNC 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_TRUNC) 

3.4 Threshold to Zero ( THRESH_TOZERO )

过滤规则:低于阈值归零

# Threshold to Zero
if src(x,y) > threshdst(x,y) = src(x,y)
elsedst(x,y) = 0

在这里插入图片描述

C++:

// Thresholding using THRESH_TOZERO 
threshold(src,dst,127,255, THRESH_TOZERO); 

Python:

# Thresholding using THRESH_TOZERO 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_TOZERO) 

3.5 Inverted Threshold to Zero ( THRESH_TOZERO_INV )

过滤规则:超过阈值归零

# Inverted Threshold to Zero
if src(x,y) > threshdst(x,y) = 0
elsedst(x,y) = src(x,y)

在这里插入图片描述

C++:

// Thresholding using THRESH_TOZERO_INV 
threshold(src,dst,127,255, THRESH_TOZERO_INV); 

Python:

# Thresholding using THRESH_TOZERO_INV 
th, dst = cv2.threshold(src,127,255, cv2.THRESH_TOZERO_INV) 

4. 总结

前面《ubuntu22.04@laptop OpenCV Get Started: 008_image_filtering_using_convolution》对图像进行卷积的计算机操作,从而对数据进行有效性过滤。

本文通过对图像进行阈值的计算机操作,从而对数据进行有效性过滤,在特定的场景下,依然能够实现很好的图像数据分析作用。

  • threshold(src,dst,thresh,maxval, type))
  • src Source array (single-channel).
  • dst Destination array with the same size and type as src .
  • thresh Threshold value.
  • maxval Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.
  • type Threshold type. For details, see threshold . The THRESH_MASK, THRESH_OTSU and THRESH_TRIANGLE threshold types are not supported.

5. 参考资料

【1】ubuntu22.04@laptop OpenCV Get Started
【2】ubuntu22.04@laptop OpenCV安装
【3】ubuntu22.04@laptop OpenCV定制化安装

6. 补充

学习是一种过程,对于前面章节学习讨论过的,就不在文中重复了。

有兴趣了解更多的朋友,请从《ubuntu22.04@laptop OpenCV Get Started》开始,一个章节一个章节的了解,循序渐进。

相关文章:

ubuntu22.04@laptop OpenCV Get Started: 009_image_thresholding

ubuntu22.04laptop OpenCV Get Started: 009_image_thresholding 1. 源由2. image_thresholding应用Demo2.1 C应用Demo2.2 Python应用Demo 3. 重点分析3.1 Binary Thresholding ( THRESH_BINARY )3.2 Inverse-Binary Thresholding ( THRESH_BINARY_INV )3.3 Truncate Threshold…...

Zeek实战—快速构建流量安全能力

第1章 网络流量与网络安全 1.2流量与网络 从宏观角度进行观察,如果将计算机网络看作一个整体,可以很容易抽象出它是由以下3个部分组成的。 1.网络终端。指连接在网络中的、能够产生或消费网络流量的软/硬件系统,是网络流量在正常情况下的…...

vim命令编辑完文件后,按ESC键退出编辑模式,无法进入命令模式解决方案

发现问题 在Vim编辑器中,我们通常需要按Esc键来退出编辑模式并进入命令模式。但有时,你可能会发现即使按了Esc键,也无法进入命令模式。这可能是由于某些设置或插件导致的。不过,有一个解决办法可以帮助你解决这个问题。 解决办法…...

【生产实测有效】Linux磁盘清理常用命令

经常遇到磁盘空间告警需要清理 常用方法 磁盘空间分析 先查看整体磁盘空间使用情况 df -Th lsblk 再有针对性的查看使用率过高的磁盘 du -hsx --exclude/{proc,sys,dev,boot,home,tmp,usr,var,app,ncltybbpo} /*查找大文件 find . -type d -exec tar -cjvf {}.tar.bz2 {…...

练习:鼠标类设计之1_类内容解析

前言 光做理论上的总结,不做练习理解不会那么深刻 做类的练习,解析类里面的内容有哪些 引入 电脑使用最频繁的两个外设:鼠标和键盘,他们每时每刻都在和用户交互,试做一个鼠标类 思路 我们现在要做一个鼠标类,这个类是属于能动类还是资源类呢?鼠标似乎自己做不了什么,需要和其…...

消息队列RabbitMQ-使用过程中面临的问题与解决思路

消息队列在使用过程中会出现很多问题 首先就是消息的可靠性,也就是消息从发送到消费者接收,消息在这中间过程中可能会丢失 生产者到交换机的过程、交换机到队列的过程、消息队列中、消费者接收消息的过程中,这些过程中消息都可能会丢失。 …...

搜索Agent方案

为啥需要整体方案,直接调用搜索接口取Top1返回不成嘛?要是果真如此Simple&Naive,New Bing岂不是很容易复刻->.-> 我们先来看个例子,前一阵火爆全网的常温超导技术,如果想回答LK99哪些板块会涨,你…...

排序算法---计数排序

原创不易,转载请注明出处。欢迎点赞收藏~ 计数排序(Counting Sort)是一种线性时间复杂度的排序算法,其核心思想是通过统计待排序元素的个数来确定元素的相对位置,从而实现排序。 具体的计数排序算法步骤如下&#xff…...

STM32——LCD(1)认识

目录 一、初识LCD 1. LCD介绍 2. 显示器的分类 3. 像素 4. LED和OLED显示器 5. 显示器的基本参数 (1)像素 (2)分辨率 (3)色彩深度 (4)显示器尺寸 (5&#xff…...

iTop-4412 裸机程序(二十二)- RTC时钟

目录 0.源码1. RTC2. iTop4412 中的 RTC使用的相关寄存器3. BCD编码4. 关键源码 0.源码 GitHub:https://github.com/Kilento/4412NoOS 1. RTC RTC是实时时钟(Real Time Clock)的缩写,是一种用于计算机系统的硬件设备&#xff0…...

Kafka 之 AdminClient API

目录 一. 前言 二. KafkaAdminClient API 2.1. API 总览 2.2. Topic 操作 2.2.1. 创建 Topic 2.2.2. Topic 列表 2.2.3. 删除 Topic 2.2.4. 描述 Topic 详细信息 2.3. 分区 Partition 操作 2.3.1. 增加分区 2.3.2. 分区副本重新分配 2.3.3. 查询分区副本列表 2.4.…...

Flutter run 一直 Running Gradle task ‘assembleDebug’…

发生缘由 Flutter 项目引入 fluttertoast 插件后,执行 Flutter run 一直 Running Gradle task ‘assembleDebug’…,最后发现下载 kotlin-compiler-embeddable-7.1.0.jar 特别的缓慢。 运行环境 电脑系统版本:Windows 10 64bit VS Code&…...

kali无线渗透之用wps加密模式破解出wpa模式的密码12

WPS(Wi-Fi Protected Setup,Wi-Fi保护设置)是由Wi-Fi联盟推出的全新Wi-Fi安全防护设定标准。该标准推出的主要原因是为了解决长久以来无线网络加密认证设定的步骤过于繁杂之弊病,使用者往往会因为步骤太过麻烦,以致干脆不做任何加密安全设定&…...

【Python】高级数据类型

🚩 WRITE IN FRONT 🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…...

挑战杯 python区块链实现 - proof of work工作量证明共识算法

文章目录 0 前言1 区块链基础1.1 比特币内部结构1.2 实现的区块链数据结构1.3 注意点1.4 区块链的核心-工作量证明算法1.4.1 拜占庭将军问题1.4.2 解决办法1.4.3 代码实现 2 快速实现一个区块链2.1 什么是区块链2.2 一个完整的快包含什么2.3 什么是挖矿2.4 工作量证明算法&…...

如何给最小化安装的CentOS主机装个远程桌面?

正文共:888 字 18 图,预估阅读时间:1 分钟 前面我们领微软云Azure的免费主机时(白嫖党618福利!来Azure领200美刀!外加云主机免费用一年!),发现“有资格免费试用服务”的主…...

知识图谱:py2neo将csv文件导入neo4j

文章目录 安装py2neo创建节点-连线关系图导入csv文件删除重复节点并连接边 安装py2neo 安装python中的neo4j操作库:pip install py2neo 安装py2neo后我们可以使用其中的函数对neo4j进行操作。 图数据库Neo4j中最重要的就是结点和边(关系)&a…...

备战蓝桥杯---图论之最短路Bellman-Ford算法及优化

目录 上次我们讲到复杂度为(nm)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。 于是我们引进Bellman-Ford算法。 核心:枚举所有的点,能松弛就松弛,直…...

C++ //练习 5.19 编写一段程序,使用do while循环重复地执行下述任务:首先提示用户输入两个string对象,然后挑出较短的那个并输出它。

C Primer(第5版) 练习 5.19 练习 5.19 编写一段程序,使用do while循环重复地执行下述任务:首先提示用户输入两个string对象,然后挑出较短的那个并输出它。 环境:Linux Ubuntu(云服务器&#x…...

算法刷题:有效三角形个数

有效三角形个数 .题目链接题目详情算法原理补充知识点双指针:对撞指针 我的答案 . 题目链接 有效三角形个数 题目详情 算法原理 补充知识点 有效三角形需要满足的条件: ab>cac>bbc>a 其实在满足1的时候,c是最大的,那么2和3是显然成立的,因此我们可以这样解题: 对…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...