【C++ STL】你真的了解string吗?浅谈string的底层实现
文章目录
- 底层结构概述
- 扩容机制
- 浅拷贝与深拷贝
- 插入和删除的效率
- 浅谈VS和g++的优化
- 总结
底层结构概述
string可以帮助我们很好地管理字符串,但是你真的了解她吗?事实上,string的设计是非常复杂的,拥有上百个接口,但最常用的就那几个。如果不了解string的底层,就很难优雅地写出高效的代码!
要想高效地管理一个string类,至少需要3个成员变量,分别是:
char* _str;
size_t _size;
size_t _capacity;
比如要存储字符串"abcde",那么_str指向了a,_size=5表示有5个有效字符(不包括’\0’),_capacity=8表示当前空间最多存储8个字符(实际上是9个,因为有’\0’)。此时,_str就是c_str的返回值,_size就是size的返回值,_capacity就是capacity的返回值;堆区上的空间总大小是9个字节,最多保存除了’\0’之外的8个字符,换句话说,当前再插入3个字符,空间就满了,需要扩容。

扩容机制
_str指向的空间是动态开辟出来的,当容量不够用时,会扩容。扩容的步骤是:
- 申请新空间。
- 把旧空间的数据拷贝到新空间中。
- 释放旧空间。

设想一下,当字符串很长时,第2步的拷贝代价就会非常大。所以,我们要想方设法地减少甚至避免扩容!
假设我们要反复地插入字符,插入100次,容量会怎么变化呢?
#include <iostream>
#include <string>
using namespace std;int main()
{string s;size_t capacity = s.capacity();cout << "init: capacity = " << capacity << endl;for (size_t i = 0; i < 100; i++){s.push_back('x');if (s.capacity() != capacity){capacity = s.capacity();cout << "new: capacity = " << capacity << endl;}}return 0;
}
VS2022运行结果:

可以观察到,一开始容量是15,第一次扩容为原来容量的2倍,后面每次扩容都为原来容量的1.5倍。
g++运行结果:

可以观察到,每次扩容都是原来容量的2倍。
如果我们能提前知晓,即将插入100个字符,就可以调用reserve,提前保留足够的空间,从而避免扩容的消耗!
#include <iostream>
#include <string>
using namespace std;int main()
{string s;// 提前开空间,从而避免扩容的消耗!s.reserve(100);size_t capacity = s.capacity();cout << "init: capacity = " << capacity << endl;for (size_t i = 0; i < 100; i++){s.push_back('x');if (s.capacity() != capacity){capacity = s.capacity();cout << "new: capacity = " << capacity << endl;}}return 0;
}
VS2022运行结果:

g++运行结果:

浅拷贝与深拷贝
string是如何拷贝的呢?
如果不写拷贝构造函数,编译器会生成默认的拷贝构造函数,对内置类型按照字节拷贝,这种拷贝称作浅拷贝!
举个例子,有一个string s1的结构如下:

此时来了另一个string s2,把s1的_str,_size和_capacity都拷贝过去,此时两个string的_str就指向了同一块空间!

此时,如果我们修改其中一个string,另一个string也会同时被修改!更可怕的是,当对象的生命周期结束时,会调用析构函数,由于两个string中的_str存储的是同一个地址,这个地址就会被delete两次,从而导致进程崩溃!
为了解决这个问题,string必须实现深拷贝!也就是说,我们需要重新申请一块空间,把"abcde"拷贝过去,让s2的_str指向新的空间!

这样,修改其中一个string就不会影响另一个string,而且两个string的_str指向不同的空间,不会出现同一块空间释放两次的问题了!
插入和删除的效率
如果要在字符串尾部插入一个字符,底层是如何实现的呢?只需要在_str[_size]的位置插入字符,再让_size++,最后再填一个’\0’即可!



当然,如果插入前,_size==_capacity,说明空间不够用了,要扩容!扩容的逻辑前面讲过,这里不再重复。
但是如果要在中间插入一个字符呢?甚至在头部插入呢?就要先挪动数据腾出空间,才能插入!



比起在尾部插入数据,多出了挪动数据的消耗,所以应尽可能地少在string的头部或中间插入数据!
同理,如果要删除头部或中间的数据,也要挪动数据覆盖删除,所以应尽可能地避免删除头部或中间的数据!
浅谈VS和g++的优化
VS2022的X86环境下,一个string类对象的大小是28字节;X64环境下,大小是40个字节。32位环境下,char*大小是4字节,size_t大小是4字节,那么_str,_size,_capacity的总大小是12字节;64位环境下,char*大小是8字节,size_t大小是8字节,那么_str,_size,_capacity的总大小是24字节。那么,剩下还有16字节去哪了呢?
观察一下监视窗口:

注意到有一个char[16]类型的数组_Buf。也就是说,VS在栈区上也申请了一块空间,长度是16个字节,当字符串的size<=15时,就存储在这个数组中;当size>15时,才会存储到堆区,这是为了减少堆区的内存碎片,因为字符串的长度一般不会超过15。
g++的X86环境下,一个string对象的大小是4字节;X64环境下,大小是8字节。这是由于底层只存储了一个指针,指针指向的空间中,存储了引用计数,_size和_capacity,以及C-string的数据。
这个引用计数又是啥玩意呢?这是g++对string做的优化,实现了写时拷贝(Copy On Write),创建对象时,把引用计数cnt初始化成1,拷贝的时候,cnt++。这样析构的时候,如果cnt不是1,就cnt--;如果cnt是1,再释放空间。当要对对象写入数据时,再进行深拷贝。这样极大地提升了拷贝的效率!
总结
- string的底层可以理解为一个指针和两个无符号整形变量,分别代表了c_str,size和capacity的返回值。
- 扩容是有代价的,尽可能使用reserve减少甚至避免扩容。
- string底层实现了深拷贝。
- 尽可能少地在string头部或者中间插入、删除数据。
- VS和g++对string做了一些优化。
相关文章:
【C++ STL】你真的了解string吗?浅谈string的底层实现
文章目录 底层结构概述扩容机制浅拷贝与深拷贝插入和删除的效率浅谈VS和g的优化总结 底层结构概述 string可以帮助我们很好地管理字符串,但是你真的了解她吗?事实上,string的设计是非常复杂的,拥有上百个接口,但最常用…...
17.3.1.3 灰度
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 灰度的算法主要有以下三种: 1、最大值法: 原图像:颜色值color(R,G,B&a…...
基于CAS操作的atomic原子类型
在上一节的卖票程序中,我们讲解了如何在多线程中保证临界资源的正确访问——使用互斥锁,即 lock_guard<mutex> lock(mtx); count;lock_guard<mutex> lock(mtx); count--; 从汇编角度解释线程间互斥-mutex互斥锁与lock_guard的使用-CSDN博客…...
Rust HashMap详解及单词统计示例
在Rust中,HashMap是一种非常有用的数据结构,用于存储键值对。本文将深入介绍HashMap的特性,以及通过一个单词统计的例子展示其用法。 HashMap简介 HashMap是Rust标准库提供的用于存储键值对的数据结构。它允许通过键快速查找对应的值&#…...
命令执行讲解和函数
命令执行漏洞简介 命令执行漏洞产生原因 应用未对用户输入做严格得检查过滤,导致用户输入得参数被当成命令来执行 命令执行漏洞的危害 1.继承Web服务程序的权限去执行系统命会或读写文件 2.反弹shell,获得目标服务器的权限 3.进一步内网渗透 远程代…...
外包实在是太坑了,划水三年,感觉人都废了
先说一下自己的情况,专科生,19年通过校招进入杭州某个外包软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了3年的功…...
代码随想录算法训练营第19天
77. 组合 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 class Solution:def combine(self, n: int, k: int) -> List[List[int]]:path []res []def dfs(n,k,index):if len(path) k:res.append(path[:])returnfor i in range(index,n1):…...
树莓派5 EEPROM引导加载程序恢复镜像
树莓派5不能正常启动,可以通过电源led灯的闪码来判断错误发生的大致情形。 LED警告闪码 如果树莓派由于某种原因无法启动,或者不得不关闭,在许多情况下,LED会闪烁特定的次数来指示发生了什么。LED会闪烁几次长闪烁,然…...
循序渐进-讲解Markdown进阶(Mermaid绘图)-附使用案例
Markdown 进阶操作 查看更多学习笔记:GitHub:LoveEmiliaForever Mermaid官网 由于CSDN对某些Mermaid或Markdown语法不支持,因此我的某些效果展示使用图片进行 下面的笔记内容全部是我根据Mermaid官方文档学习的,因为是初学者所以…...
寒假作业2月6号
第五章 静态成员与友元 一、填空题 1、一个类的头文件如下所示,num初始化值为5,程序产生对象T,且修改num为10,并使用show()函数输出num的值10。 #include <iostream.h> class Test { private: static int num; publi…...
ChatGPT绘图指南:DALL.E3玩法大全(一)
一、 DALLE.3 模型介绍 1、什么是 DALLE.3 模型? DALLE-3模型,是一种由OpenAI研发的技术,它是一种先进的生成模型,可以将文字描述转化为清晰的图片。这种模型的名称"DALLE"实际上是"Deep Auto-regressive Latent …...
计算机服务器中了_locked勒索病毒怎么办?Encrypted勒索病毒解密数据恢复
随着网络技术的不断发展,数字化办公已经成为企业生产运营的根本,对于企业来说,数据至关重要,但网络威胁无处不在,近期,云天数据恢复中心接到很多企业的求助,企业的计算机服务器遭到了_locked勒索…...
VueCLI核心知识3:全局事件总线、消息订阅与发布
这两种方式都可以实现任意两个组件之间的通信 1 全局事件总线 1.安装全局事件总线 import Vue from vue import App from ./App.vueVue.config.productionTip false/* 1.第一种写法 */ // const Demo Vue.extend({}) // const d new Demo()// Vue.prototype.x d // 把Dem…...
Redis中缓存问题
缓存预热 Redis缓存预热是一项关键任务,可帮助提升应用程序的性能和响应速度。在高流量的应用程序中,Redis缓存预热可以加速数据查询和读取,从而改善用户体验。本文将介绍一种快速、稳定的Redis缓存预热方案,并提供相应代码实现。…...
数码管扫描显示-单片机通用模板
数码管扫描显示-单片机通用模板 一、数码管扫描的原理二、display.c的实现1、void Display(void) 各模式界面定义数据2、void BackupRamToDisRam(void)从缓存区刷新显示映射Ram3、void FreshDisplay(void) 映射显示Ram到主控的IO口4、void LcdDisplay_8bit(void) 映射显示Ram到…...
IDEA中的神仙插件——Smart Input (自动切换输入法)
IDEA中的神仙插件——Smart Input (自动切换输入法) 设置 更多功能详见官方文档:Windows版SmartInput使用入门...
shell编程:求稀疏数组中元素的和(下标不连续)
#!/bin/basharr([2]3 [5]2 [6]2 [9]1)for i in "${!arr[]}" dosum$((sumarr[i])) doneecho $sumBash 脚本中,* 和 符号在数组上下文中有不同的用途。当使用它们来遍历数组时,必须了解它们之间的区别。 * (无前置感叹号 !): 在索引…...
Rust 学习笔记 - 详解数据类型
前言 任何一门编程语言几乎都脱离不了:变量、基本类型、函数、注释、循环、条件判断,这是一门编程语言的语法基础,只有当掌握这些基础语法及概念才能更好的学习 Rust。 标量类型(Scalar Types) 在 Rust 中ÿ…...
构建本地yum源
下载repo数据文件 根据需要修改下载路径和reposync参数 #!/bin/bashlocal_path/repo/remote/rhel9 enabled_repos$(yum repolist enabled | awk NR>3{print $1}) tempfile$(mktemp -t reposync.XXXX)check() {echo "目标目录剩余空间: $(df -h ${local_path} | awk …...
常用的正则表达式,收藏必备!!!
正则表达式是一种强大的文本模式匹配工具,用于在字符串中查找、替换和验证特定模式的文本。下面是一些常用的正则表达式示例: 匹配Email地址: ^[a-zA-Z0-9._%-][a-zA-Z0-9.-]\.[a-zA-Z]{2,}$匹配URL: ^(https?|ftp)://[^\s/$.?#…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
