[Doris] Doris的安装和部署 (二)
文章目录
- 1.安装要求
- 1.1 Linux操作系统要求
- 1.2 软件需求
- 1.3 注意事项
- 1.4 内部端口
- 2.集群部署
- 2.1 操作系统安装要求
- 2.2 下载安装包
- 2.3 解压
- 2.4 配置FE
- 2.5 配置BE
- 2.6 添加BE
- 2.7 FE 扩容和缩容
- 2.8 Doris 集群群起脚本
- 3.图形化
1.安装要求
1.1 Linux操作系统要求
1.2 软件需求
1.3 注意事项
- 所有部署节点关闭Swap。
- Follower的数量必须为奇数,Observer 数量随意。
- 当集群可用性要求很高时(比如提供在线业务),可以部署3个 Follower和1-3个Observer。如果是离线业务,建议部署1个Follower和1-3个Observer。
- 测试环境也可以仅适用一个BE进行测试。实际生产环境,BE实例数量直接决定了整体查询延迟。
1.4 内部端口
当部署多个FE实例时,要保证FE的http_port配置相同。
2.集群部署
2.1 操作系统安装要求
设置系统最大打开文件句柄数(注意这里的*不要去掉)。
sudo vim /etc/security/limits.conf
* soft nofile 65536
* hard nofile 65536
* soft nproc 65536
* hard nproc 65536
设置最大虚拟块的大小。
sudo vim /etc/sysctl.conf
vm.max_map_count=2000000
重启生效。
2.2 下载安装包
cat /proc/cpuinfo | grep avx2
如果能看到avx2 字样选择带 avx2 的包。
arm64 架构 cpu(apple),选择 arm64 的安装包下载。
2.3 解压
(1)安装 fe
mkdir -p /opt/module/doristar -xvf apache-doris-fe-1.2.4.1-bin-arm.tar.xz -C /opt/module/dorismv /opt/module/doris/apache-doris-fe-1.2.4.1-bin-arm /opt/module/doris/fe
(2)安装 be
tar -xvf apache-doris-be-1.2.4.1-bin-arm.tar.xz -C /opt/module/dorismv /opt/module/doris/apache-doris-be-1.2.4.1-bin-arm /opt/module/doris/be
(3)安装其他依赖(java udf 函数)
tar -xvf apache-doris-dependencies-1.2.4.1-bin-arm.tar.xz -C /opt/module/dorismv /opt/module/doris/apache-doris-dependencies-1.2.4.1-bin-arm /opt/module/doris/dependenciescp /opt/module/doris/dependencies/java-udf-jar-with-dependencies.jar /opt/module/doris/be/lib
2.4 配置FE
1)修改FE配置文件
vim /opt/module/doris/fe/conf/fe.conf# web 页面访问端口
http_port = 7030
# 配置文件中指定元数据路径:默认在 fe 的根目录下,可以不配
# meta_dir = /opt/module/doris/fe/doris-meta
# 修改绑定 ip
priority_networks = 192.168.254.102/24
- 生产环境强烈建议单独指定目录不要放在Doris安装目录下,最好是单独的磁盘(如果有SSD最好)。
- 如果机器有多个IP,比如内网外网, 虚拟机docker等,需要进行IP绑定,才能正确识别。
- JAVA_OPTS 默认Java 最大堆内存为 4GB,建议生产环境调整至 8G 以上。
2)启动FE
/opt/module/doris/fe/bin/start_fe.sh --daemon
3)登录 FE Web页面
地址:http://hadoop102:7030/login
用户:root
密码:无
2.5 配置BE
vim /opt/module/doris/be/conf/be.confwebserver_port = 7040priority_networks = 192.168.254.102/24mem_limit=40%
分发be
xsync be
2.6 添加BE
BE节点需要先在FE中添加,才可加入集群。可以使用mysql-client连接到FE。
1)使用 Mysql 客户端连接到 FE
mysql -h hadoop102 -P9030 -uroot
2)添加BE
ALTER SYSTEM ADD BACKEND "hadoop102:9050";
ALTER SYSTEM ADD BACKEND "hadoop103:9050";
ALTER SYSTEM ADD BACKEND "hadoop104:9050";
3)启动BE
hadoop102, hadoop103, hadoop104 上都启动BE
/opt/module/doris/be/bin/start_be.sh --daemon
4)mysql查看BE状态
SHOW PROC '/backends'\G
2.7 FE 扩容和缩容
通过将FE扩容至3个以上节点(必须是奇数)来实现FE的高可用。
1)添加为OBSERVER
ALTER SYSTEM ADD OBSERVER "hadoop103:9010";
ALTER SYSTEM ADD OBSERVER "hadoop104:9010";
2)分发fe
xsync fe
3)启动fe
hadoop102启动:
/opt/module/doris/fe/bin/start_fe.sh --daemon
hadoop103, hadoop104 第一次启动的时候需要参数 --helper leader主机: edit_log_port
/opt/module/doris/fe/bin/start_fe.sh --daemon --helper hadoop102:9010
4)mysql上看fe的状态
show proc '/frontends';
2.8 Doris 集群群起脚本
#!/bin/bash
case $1 in"start")for host in hadoop102 hadoop103 hadoop104 ; doecho "========== 在 $host 上启动 fe ========="ssh $host "source /etc/profile; /opt/module/doris/fe/bin/start_fe.sh --daemon"donefor host in hadoop102 hadoop103 hadoop104 ; doecho "========== 在 $host 上启动 be ========="ssh $host "source /etc/profile; /opt/module/doris/be/bin/start_be.sh --daemon"done;;"stop")for host in hadoop102 hadoop103 hadoop104 ; doecho "========== 在 $host 上停止 fe ========="ssh $host "source /etc/profile; /opt/module/doris/fe/bin/stop_fe.sh "donefor host in hadoop102 hadoop103 hadoop104 ; doecho "========== 在 $host 上停止 be ========="ssh $host "source /etc/profile; /opt/module/doris/be/bin/stop_be.sh "done;;*)echo "你启动的姿势不对"echo " start 启动doris集群"echo " stop 停止stop集群";;
esac
hadoop102:7030/login
3.图形化
BE:backends
FE:frontends
相关文章:

[Doris] Doris的安装和部署 (二)
文章目录 1.安装要求1.1 Linux操作系统要求1.2 软件需求1.3 注意事项1.4 内部端口 2.集群部署2.1 操作系统安装要求2.2 下载安装包2.3 解压2.4 配置FE2.5 配置BE2.6 添加BE2.7 FE 扩容和缩容2.8 Doris 集群群起脚本 3.图形化 1.安装要求 1.1 Linux操作系统要求 1.2 软件需求 1…...
【QT+QGIS跨平台编译】之三十五:【cairo+Qt跨平台编译】(一套代码、一套框架,跨平台编译)
文章目录 一、cairo介绍二、文件下载三、文件分析四、pro文件五、编译实践一、cairo介绍 Cairo是一个功能强大的开源2D图形库,它提供了一套跨平台的API,用于绘制矢量图形和文本。Cairo支持多种输出目标,包括屏幕、图像文件、PDF、SVG等。 Cairo的设计目标是简单易用、高效…...

MySQL(基础)
第01章_数据库概述 1. 为什么要使用数据库 持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用。大多数情况下,特别是企业级应用,数据持久化意味着将内存中的数据保存到硬盘上加以”固化”,而持久化的实现过程大多…...

STM32F1 - 中断系统
Interrupt 1> 硬件框图2> NVIC 中断管理3> EXTI 中断管理3.1> EXTI与NVIC3.2> EXTI内部框图 4> 外部中断实验4.1> 实验概述4.2> 程序设计 5> 中断向量表6> 总结 1> 硬件框图 NVIC:Nested Vectored Interrupt Controller【嵌套向量…...

【Linux系统化学习】缓冲区
目录 缓冲区 一个样例 现象解释 缓冲区存在的位置 缓冲区 在刚开始学习C语言的时候我们就听过缓冲区这个名词,很是晦涩难懂;在Linux下进程退出时也包含缓冲区,因此缓冲区到底是什么?有什么作用? 让我们先从一个小…...

基于BP算法的SAR成像matlab仿真
目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 BP算法的基本原理 4.2 BP算法的优点与局限性 5.完整工程文件 1.课题概述 基于BP算法的SAR成像。合成孔径雷达(SAR)是一种高分辨率的雷达系统,能够在各种天气和光…...

【C++ STL】你真的了解string吗?浅谈string的底层实现
文章目录 底层结构概述扩容机制浅拷贝与深拷贝插入和删除的效率浅谈VS和g的优化总结 底层结构概述 string可以帮助我们很好地管理字符串,但是你真的了解她吗?事实上,string的设计是非常复杂的,拥有上百个接口,但最常用…...

17.3.1.3 灰度
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。 灰度的算法主要有以下三种: 1、最大值法: 原图像:颜色值color(R,G,B&a…...
基于CAS操作的atomic原子类型
在上一节的卖票程序中,我们讲解了如何在多线程中保证临界资源的正确访问——使用互斥锁,即 lock_guard<mutex> lock(mtx); count;lock_guard<mutex> lock(mtx); count--; 从汇编角度解释线程间互斥-mutex互斥锁与lock_guard的使用-CSDN博客…...
Rust HashMap详解及单词统计示例
在Rust中,HashMap是一种非常有用的数据结构,用于存储键值对。本文将深入介绍HashMap的特性,以及通过一个单词统计的例子展示其用法。 HashMap简介 HashMap是Rust标准库提供的用于存储键值对的数据结构。它允许通过键快速查找对应的值&#…...

命令执行讲解和函数
命令执行漏洞简介 命令执行漏洞产生原因 应用未对用户输入做严格得检查过滤,导致用户输入得参数被当成命令来执行 命令执行漏洞的危害 1.继承Web服务程序的权限去执行系统命会或读写文件 2.反弹shell,获得目标服务器的权限 3.进一步内网渗透 远程代…...

外包实在是太坑了,划水三年,感觉人都废了
先说一下自己的情况,专科生,19年通过校招进入杭州某个外包软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了3年的功…...
代码随想录算法训练营第19天
77. 组合 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 class Solution:def combine(self, n: int, k: int) -> List[List[int]]:path []res []def dfs(n,k,index):if len(path) k:res.append(path[:])returnfor i in range(index,n1):…...

树莓派5 EEPROM引导加载程序恢复镜像
树莓派5不能正常启动,可以通过电源led灯的闪码来判断错误发生的大致情形。 LED警告闪码 如果树莓派由于某种原因无法启动,或者不得不关闭,在许多情况下,LED会闪烁特定的次数来指示发生了什么。LED会闪烁几次长闪烁,然…...

循序渐进-讲解Markdown进阶(Mermaid绘图)-附使用案例
Markdown 进阶操作 查看更多学习笔记:GitHub:LoveEmiliaForever Mermaid官网 由于CSDN对某些Mermaid或Markdown语法不支持,因此我的某些效果展示使用图片进行 下面的笔记内容全部是我根据Mermaid官方文档学习的,因为是初学者所以…...
寒假作业2月6号
第五章 静态成员与友元 一、填空题 1、一个类的头文件如下所示,num初始化值为5,程序产生对象T,且修改num为10,并使用show()函数输出num的值10。 #include <iostream.h> class Test { private: static int num; publi…...

ChatGPT绘图指南:DALL.E3玩法大全(一)
一、 DALLE.3 模型介绍 1、什么是 DALLE.3 模型? DALLE-3模型,是一种由OpenAI研发的技术,它是一种先进的生成模型,可以将文字描述转化为清晰的图片。这种模型的名称"DALLE"实际上是"Deep Auto-regressive Latent …...

计算机服务器中了_locked勒索病毒怎么办?Encrypted勒索病毒解密数据恢复
随着网络技术的不断发展,数字化办公已经成为企业生产运营的根本,对于企业来说,数据至关重要,但网络威胁无处不在,近期,云天数据恢复中心接到很多企业的求助,企业的计算机服务器遭到了_locked勒索…...

VueCLI核心知识3:全局事件总线、消息订阅与发布
这两种方式都可以实现任意两个组件之间的通信 1 全局事件总线 1.安装全局事件总线 import Vue from vue import App from ./App.vueVue.config.productionTip false/* 1.第一种写法 */ // const Demo Vue.extend({}) // const d new Demo()// Vue.prototype.x d // 把Dem…...
Redis中缓存问题
缓存预热 Redis缓存预热是一项关键任务,可帮助提升应用程序的性能和响应速度。在高流量的应用程序中,Redis缓存预热可以加速数据查询和读取,从而改善用户体验。本文将介绍一种快速、稳定的Redis缓存预热方案,并提供相应代码实现。…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...