当前位置: 首页 > news >正文

图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

  • 2.1 图统计和核方法
    • 2.1.1 节点层次的统计和特征
      • 节点的度
    • 节点中心度
    • 聚类系数
    • Closed Triangles, Ego Graphs, and Motifs
  • 图层次的特征和图的核
    • 节点袋
    • Weisfieler–Lehman核
    • Graphlets和基于路径的方法
  • 邻域重叠检测

2.1 图统计和核方法

2.1.1 节点层次的统计和特征

在这里插入图片描述

节点的度

d u = ∑ v ∈ V A ( u , v ) (2.1) d_u = \sum_{v\in \mathcal{V}} A(u, v)\tag{2.1} du=vVA(u,v)(2.1)

需要说明的是,在有向和加权图中,度可以区分为不同的概念。例如入度和出度之类的。不管怎么说,这个特征在传统机器学习中都是十分重要的。

节点中心度

e u = 1 λ ∑ v ∈ V A ( u , v ) e v , ∀ u ∈ V (2.2) e_u = \frac{1}{\lambda}\sum_{v\in \mathcal{V}}A(u, v)e_v, \forall u\in \mathcal{V}\tag{2.2} eu=λ1vVA(u,v)ev,uV(2.2)

一种常见的方式是利用特征向量中心度,我们定义每个节点的中心度为周围所有中心度的均值,其中 λ \lambda λ是一个常数。

求解这一过程,可以写作如下形式: λ e = A e (2.3) \lambda e = Ae\tag{2.3} λe=Ae(2.3)
如果我们期望所有的中心度都是正的,我们可以应用Perron-Frobenius Theorem,即对A求解特征向量。
此外我们也可以通过迭代法如下: e ( t + 1 ) = A e ( t ) (2.4) e^{(t+1)}=Ae^{(t)}\tag{2.4} e(t+1)=Ae(t)(2.4)

如果我们设 e 0 = ( 1 , 1 , . . . , 1 ) T e^0=(1,1,...,1)^T e0=(1,1,...,1)T那么每次迭代后的结果是截至T步时,经过的次数,由此可以得到重要性。

聚类系数

用于衡量节点局部邻域封闭三角形的比例。

c u = ∣ ( v 1 , v 2 ) ∈ E : v 1 , v 2 ∈ N ( u ) ∣ C d u 2 (2.5) c_u=\frac{|(v_1,v_2)\in \mathcal{E}:v_1,v_2\in \mathcal{N}(u)|}{C_{d_u}^2}\tag{2.5} cu=Cdu2(v1,v2)E:v1,v2N(u)(2.5)
其中 N ( u ) = { v ∈ V : ( u , v ) ∈ E } \mathcal{N}(u)=\{v\in \mathcal{V}:(u,v)\in \mathcal{E}\} N(u)={vV:(u,v)E}也就是所有的相邻节点构成的集合。

这一特征描述了节点附近结构的紧密程度。

Closed Triangles, Ego Graphs, and Motifs

图层次的特征和图的核

节点袋

单纯综合节点的特征。

Weisfieler–Lehman核

一种迭代邻域聚合方法。
在这里插入图片描述

Graphlets和基于路径的方法

Graphlets:计算不同子图结构出现次数。具体方式为,枚举所有可能的子图结构,然后统计出现的次数。

基于路径,则是统计类似于最短路之类的。

邻域重叠检测

未完待续。

相关文章:

图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

图表示学习 Graph Representation Learning chapter2 背景知识和传统方法 2.1 图统计和核方法2.1.1 节点层次的统计和特征节点的度 节点中心度聚类系数Closed Triangles, Ego Graphs, and Motifs 图层次的特征和图的核节点袋Weisfieler–Lehman核Graphlets和基于路径的方法 邻域…...

OpenMVG(计算两个球形图像之间的相对姿态、细化重建效果)

目录 1 Bundle Adjustment(细化重建效果) 2 计算两个球形图像之间的相对姿态 1 Bundle Adjustment(细化重建效果) 数...

【QT+QGIS跨平台编译】之三十四:【Pixman+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、Pixman介绍二、文件下载三、文件分析四、pro文件五、编译实践一、Pixman介绍 Pixman是一款开源的软件库,提供了高质量的像素级图形处理功能。它主要用于在图形渲染、合成和转换方面进行优化,可以帮助开发人员在应用程序中实现高效的图形处理。 Pixman的主要特…...

2.17学习总结

tarjan 【模板】缩点https://www.luogu.com.cn/problem/P3387 题目描述 给定一个 �n 个点 �m 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。 允许多次经过一条边或者…...

Unity类银河恶魔城学习记录7-7 P73 Setting sword type源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili Sword_Skill_Controller.cs using System.Collections; using System.Col…...

安卓版本与鸿蒙不再兼容,鸿蒙开发工程师招疯抢

最近,互联网大厂纷纷开始急招华为鸿蒙开发工程师。这是一个新的信号。在Android和iOS长期霸占市场的今天,鸿蒙的崛起无疑为整个行业带来了巨大的震动。 2023年11月10日,网易更新了高级/资深Android开发工程师岗位,职位要求参与云音…...

《白话C++》第9章 泛型,Page842~844 9.4.2 AutoPtr

源起: C编程中,最容易出的问题之一,就是内存泄露,而new一个对象,却忘了delete它,则是造成内存泄露的主要原因之一 例子一: void foo() {XXXObject* xo new XXXObject;if(!xo->DoSomethin…...

服务流控(Sentinel)

引入依赖 <!-- 必须的 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency><!-- sentinel 核心库 --> <dependency><groupId>com.ali…...

点亮代码之灯,程序员的夜与电脑

在科技的海洋里&#xff0c;程序员是那些驾驶着代码船只&#xff0c;穿梭于虚拟世界的探险家。他们手中的键盘是航行的舵&#xff0c;而那台始终不愿关闭的电脑&#xff0c;便是他们眼中永不熄灭的灯塔。有人说&#xff0c;程序员不喜欢关电脑&#xff0c;这究竟是为什么呢&…...

ClickHouse--07--Integration 系列表引擎

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 Integration 系列表引擎1 HDFS1.1 语法1.2 示例&#xff1a; 2 MySQL2.1 语法2.2 示例&#xff1a; 3 Kafka3.1 语法3.2 示例&#xff1a;3.3 数据持久化方法 Integ…...

前端架构: 脚手架框架之yargs的11种基础核心特性的应用教程

脚手架框架之yargs的基础核心特性与应用 1 &#xff09;概述 yargs 是脚手架当中使用量非常大的一个框架进入它的npm官网: https://www.npmjs.com/package/yargs 目前版本: 17.7.2Weekly Downloads: 71,574,188 (动态数据)最近更新&#xff1a;last month (github)说明这是一个…...

MySQL性能调优篇(6)-主从复制的配置与管理

MySQL数据库主从复制是一种常用的数据复制和高可用性解决方案。它允许将一个MySQL主服务器上的数据自动复制到多个从服务器上&#xff0c;从而提供了数据冗余备份、读写分离等优势。本文将详细介绍MySQL数据库主从复制的配置与管理。 1. 原理概述 MySQL主从复制是基于二进制日…...

Linux第49步_移植ST公司的linux内核第1步_获取linux源码

已知ST公司的linux源码路径&#xff1a; /home/zgq/linux/atk-mp1/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0 1、创建“my_linux”目录 打开第1个终端 输入“ls回车” 输入“cd linux/回车”&#xff0c;切换…...

怎样学习Windows下命令行编写

第一&#xff1a;Windows下命令行指的是cmd和powershell命令行编写 第二&#xff1a;必须要用好help或/?命令&#xff0c;这个命令是最基本的也是最常用的命令列表和语法查看命令 第三&#xff1a;cmd命令使用help查看命令列表或“一串带参数的命令 /?"&#xff08;不…...

数据结构第十六天(二叉树层序遍历/广度优先搜索(BFS)/队列使用)

目录 前言 概述 接口 源码 测试函数 运行结果 往期精彩内容 前言 从前的日色变得慢&#xff0c;车&#xff0c;马&#xff0c;邮件都慢&#xff0c;一生,只够爱一个人。 概述 二叉树的层序遍历可以使用广度优先搜索&#xff08;BFS&#xff09;来实现。具体步骤如下&…...

6.s081 学习实验记录(八)Networking

文章目录 network driver network driver //TODO...

图解贝塞尔曲线生成原理

贝塞尔曲线是一种在计算机图形学中广泛使用的参数曲线&#xff0c;主要用于二维图形应用程序中。它是由法国工程师皮埃尔贝塞尔在1962年提出的&#xff0c;主要用于汽车车身设计。贝塞尔曲线的主要特点是&#xff0c;只要确定了控制点&#xff0c;就可以生成一条平滑的曲线。 …...

租房招聘|在线租房和招聘平台|基于Springboot的在线租房和招聘平台设计与实现(源码+数据库+文档)

在线租房和招聘平台目录 目录 基于Springboot的在线租房和招聘平台设计与实现 一、前言 二、系统功能设计 三、系统实现 1、房屋管理 2、招聘管理 3、平台资讯管理 4、平台资讯类型管理 四、数据库设计 1、实体ER图 六、论文参考 七、最新计算机毕设选题推荐 八、源…...

简单试验:用Excel进行爬虫

文章目录 Excel的版本具体操作实例从网站上爬取工商银行的汇率Excel的版本 office 2016,2019,365这几个版本都可以 具体操作 #mermaid-svg-NlIVMivGoJbdyWW0 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-NlIVMi…...

SQL 精讲-MySql 常用函数,MySQL语句精讲和举例

FORMAT(数值,保留位数) 四舍五入 SELECT *,FORMAT(score/3,2) from studentROUND(数值,保留位数) 四舍五入 SELECT ROUND(score/3,2) from studentCONCAT(字符串 1,字符串 2) 字符串拼接 SELECT CONCAT(customer_name, (,address,)) from mt_customerLEFT(字符串,长度) 截取…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...