当前位置: 首页 > news >正文

四分位距IQR_ interquartile range

四分位距IQR_ interquartile range

  • 1 IQR(Interquartile Range)四分位距的含义
  • 2 如何计算IQR
  • 参考:

1 IQR(Interquartile Range)四分位距的含义

官方定义: 四分位距(interquartile range, IQR),又称四分差。是描述统计学中的一种方法,以确定第三四分位数第一四分位数的差距。与方差、标准差一样,表示统计资料中各变量分散情形,但四分差更多为一种稳健统计。

盒须图使用四分位数(将数据划分为大小相等的四组点)来绘制数据的形状。盒子代表第 1 个和第 3 个四分位数,它们等于第 25 个和第 75 个百分点。盒子内的线代表第二个四分位数,即中间值。

四分位距(该离群值检测方法正是因此而得名)是第一个和第三个四分位数(盒子边缘)之间的间距。Tukey 认为,如果数据点比第一个四分位数低 1.5 乘 IQR,或比第三个四分位数高 1.5 乘 IQR,就属于离群或极度离群。在经典的盒须图中,须线一直延伸到界限内的最后一个数据点。

四分位距 (IQR) 是一种衡量变异性的方法,它通过将数据集划分为四分位数来实现。四分位数将一个按等级排序的数据集划分为四个相等的部分。即 Q1(第 1 个四分位数)、Q2(第 2 个四分位数)和 Q3(第 3 个四分位数)。IQR 定义为 Q3–Q1,位于 Q3+1.5IQR 或 Q1-1.5IQR 之外的数据被视为离群值。

image.png

2 如何计算IQR

计算 IQR:分步指南 要计算四分位距,请按照下列步骤操作:

第 1 步:按升序排列数据首先按升序排列数据集。
第 2 步:求中位数Q2确定数据集的中位数,即中间值。 如果数据集有奇数个值,则中位数是中间的值。 对于偶数个值,取中间两个值的平均值。
步骤 3:找到下半部分 (Q1) 的中位数 确定数据集下半部分的中位数,排除总体中位数。 这是第一个四分位数 (Q1)。
步骤 4:找到上半部分的中位数 (Q3) 同样,找到数据集上半部分的中位数,排除整体中位数。 这是第三个四分位数 (Q3)。
第 5 步:**计算 IQR **最后,从 Q1 中减去 Q3,即可得到四分位数间距:IQR = Q3 – Q1

举例说明:图表中的数据:

数列参数四分差
1102
2104
3105Q1
4107
5108
6109Q2(中位数)
7110
8112
9115Q3
10118
11118



从这个图示中,我们可以算出四分差的距离为115−105=10

用python代码实现:
用python实现当然可以一个一个循环去计算,但是python的numpy库提供了非常好用的封装函数,这里就不再去一个一个计算了,而是直接使用numpy库进行处理了,实现代码如下

import numpy as npdef get_iqr_data(datas):q1=np.quantile(datas,0.25)q2=np.median(datas)q3=np.quantile(datas,0.75)iqr=q3-q1down=q1-1.5*iqrup=q3+1.5*iqrreturn [q1,q2,q3,iqr,down,up]if __name__=="__main__":x=[1,2,3,4,5,6,7,8,9,10,11]rs=get_iqr_data(x)print(rs)

执行结果如下:

[3.5, 6.0, 8.5, 5.0, -4.0, 16.0]

通过这里的执行结果可以看住,在数据列表 [1,2,3,4,5,6,7,8,9,10,11] 中,四分之一的点的数据为3.5,这是因为总共11个数,四分之一落在了两个数之间,四分之二的点恰好就是第6个数了,四分之三的点又落在了两个数据之间,所以是8.5,那么这里IQR就是q3-q1即5.0,通过公式计算此时有效范围为(-4.0,16.0),超出此范围的数据为无效数据。

参考:

https://blog.csdn.net/redrose2100/article/details/130211842
https://zh.wikipedia.org/wiki/%E5%9B%9B%E5%88%86%E4%BD%8D%E8%B7%9D

相关文章:

四分位距IQR_ interquartile range

四分位距IQR_ interquartile range 1 IQR(Interquartile Range)四分位距的含义2 如何计算IQR参考: 1 IQR(Interquartile Range)四分位距的含义 官方定义: 四分位距(interquartile range, IQR&a…...

Vision Transformer - VIT

文章目录 1. Embedding层2. Encoder层3. MLP Head层4. Hybrid混合模型 论文:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 网址:https://arxiv.org/abs/2010.11929 Hybrid - 传统CNN和Transformer混合模型 模型架构 输…...

HTTP与HTTPS:网络安全之门户

源码分享 ​​https://docs.qq.com/sheet/DUHNQdlRUVUp5Vll2?tabBB08J2​​ 在进行网页爬取和数据收集时,我们经常会与HTTP(超文本传输协议)和HTTPS(安全的超文本传输协议)打交道。这两种协议都用于互联网上的数据传…...

头歌:共享单车之数据分析

第1关 统计共享单车每天的平均使用时间 package com.educoder.bigData.sharedbicycle;import java.io.IOException; import java.text.ParseException; import java.util.Collection; import java.util.Date; import java.util.HashMap; import java.util.Locale; import java…...

MySQL的数据类型和细节

1.整型 数值类型字节描述TINYINT[UNSIGNED]1很小的整数,默认有符号 [-128,127]/[0,255]SMALLINT[UNSIGNED]2较小的整数,默认有符号 [-32768,32767]/[0,65535]MEDIUMINT[UNSIGNED]3中等的整数,默认有符号 [-8388608,8388607]/[0,16777215]…...

自建AWS S3存储服务

unsetunset前言unsetunset AWS S3(Amazon S3,全名为亚马逊简易存储服务),是亚马逊公司利用其亚马逊网络服务系统所提供的网络在线存储服务。我常用的很多SaaS服务中提供的文件存储功能,底层也都是AWS S3,比…...

『论文阅读|研究用于视障人士户外障碍物检测的 YOLO 模型』

研究用于视障人士户外障碍物检测的 YOLO 模型 摘要1 引言2 相关工作2.1 障碍物检测的相关工作2.2 物体检测和其他基于CNN的模型 3 问题的提出4 方法4.1 YOLO4.2 YOLOv54.3 YOLOv64.4 YOLOv74.5 YOLOv84.6 YOLO-NAS 5 实验和结果5.1 数据集和预处理5.2 训练和实现细节5.3 性能指…...

LeetCode--1445. 苹果和桔子

文章目录 1 题目描述2 测试用例3 解题思路 1 题目描述 表: Sales ------------------------ | Column Name | Type | ------------------------ | sale_date | date | | fruit | enum | | sold_num | int | ------------------------(sale…...

Java基础知识

一、标识符规范 标识符必须以字母(汉字)、下划线、美元符号开头,其他部分可以是字母、下划线、美元符号,数字的任意组合。谨记不能以数字开头。java使用unicode字符集,汉字也可以用该字符集表示。因此汉字也可以用作变量名。 关键字不能用作…...

并发编程-Synchronized

什么是Synchronized synchronized是Java提供的一个关键字,Synchronized可以保证并发程序的原子性,可见性,有序性。 我们会把synchronized称为重量级锁。主要原因,是因为JDK1.6之前,synchronized是一个重量级锁相比于J…...

C语言——从头开始——深入理解指针(1)

一.内存和地址 我们知道计算上CPU(中央处理器)在处理数据的时候,是通过地址总线把需要的数据从内存中读取的,后通过数据总线把处理后的数据放回内存中。如下图所示: 计算机把内存划分为⼀个个的内存单元,每…...

微信小程序-绑定数据并在后台获取它

如图 遍历列表的过程中需要绑定数据&#xff0c;点击时候需要绑定数据 这里是源代码 <block wx:for"{{productList}}" wx:key"productId"><view class"product-item" bindtap"handleProductClick" data-product-id"{{i…...

【删除数组用delete和Vue.delete有什么区别】

删除数组用delete和Vue.delete有什么区别&#xff1f; 在 JavaScript 中&#xff0c;delete 和 Vue.js 中的 Vue.delete 是两个完全不同的概念&#xff0c;它们在删除数组元素时的作用和效果也有所不同。 JavaScript 中的 delete 关键字&#xff1a; 在原生 JavaScript 中&a…...

【QT+QGIS跨平台编译】之四十二:【QWT+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、QWT介绍二、QWT下载三、文件分析四、pro文件五、编译实践5.1 Windows下编译4.2 Linux下编译5.3 MacOS下编译一、QWT介绍 QWT是一个基于Qt框架的开源C++库,用于创建交互式的图形用户界面。它提供了丰富的绘图和交互功能,可以用于快速开发图形化应用程序。 QWT包…...

yum方式快速安装mysql

问题描述 使用yum的方式简单安装了一下mysql&#xff0c;对过程进行简单记录。 步骤 ①安装wget和vim sudo yum -y install wget vim②下载mysql的rpm包 sudo wget https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm③升级和更新rpm包 sudo rpm -Uv…...

基于Java的家政预约管理平台

功能介绍 平台采用B/S结构&#xff0c;后端采用主流的Springboot框架进行开发&#xff0c;前端采用主流的Vue.js进行开发。 整个平台包括前台和后台两个部分。 前台功能包括&#xff1a;首页、家政详情、家政入驻、用户中心模块。后台功能包括&#xff1a;家政管理、分类管理…...

C语言前世今生

C语言前世今生 C语言的发展历史 C语言于1972年11月问世&#xff0c;1978年美国电话电报公司&#xff08;AT&T&#xff09;贝尔实验室正式发布C语言&#xff0c;1983年由美国国家标准局&#xff08;American National Standards Institute&#xff0c;简称ANSI&#xff09…...

android aidl进程间通信封装通用实现-用法说明

接上一篇&#xff1a;android aidl进程间通信封装通用实现-CSDN博客 该aar包的使用还是比较方便的 一先看客户端 1 初始化 JsonProtocolManager.getInstance().init(mContext, "com.autoaidl.jsonprotocol"); //客户端监听事件实现 JsonProtocolManager.getInsta…...

【Java中23种设计模式-单例模式2--懒汉式线程不安全】

加油&#xff0c;新时代打工人&#xff01; 今天&#xff0c;重新回顾一下设计模式&#xff0c;我们一起变强&#xff0c;变秃。哈哈。 23种设计模式定义介绍 Java中23种设计模式-单例模式 package mode;/*** author wenhao* date 2024/02/19 09:16* description 单例模式--懒…...

【后端高频面试题--Linux篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;后端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 后端高频面试题--Linux篇 往期精彩内容Windows和Linux的区别&#xff1f;Unix和Linux有什么区别…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

HTML中各种标签的作用

一、HTML文件主要标签结构及说明 1. <&#xff01;DOCTYPE html> 作用&#xff1a;声明文档类型&#xff0c;告知浏览器这是 HTML5 文档。 必须&#xff1a;是。 2. <html lang“zh”>. </html> 作用&#xff1a;包裹整个网页内容&#xff0c;lang"z…...

window 显示驱动开发-如何查询视频处理功能(三)

​D3DDDICAPS_GETPROCAMPRANGE请求类型 UMD 返回指向 DXVADDI_VALUERANGE 结构的指针&#xff0c;该结构包含特定视频流上特定 ProcAmp 控件属性允许的值范围。 Direct3D 运行时在D3DDDIARG_GETCAPS的 pInfo 成员指向的变量中为特定视频流的 ProcAmp 控件属性指定DXVADDI_QUER…...

Shell 解释器​​ bash 和 dash 区别

bash 和 dash 都是 Unix/Linux 系统中的 ​​Shell 解释器​​&#xff0c;但它们在功能、语法和性能上有显著区别。以下是它们的详细对比&#xff1a; ​​1. 基本区别​​ ​​特性​​​​bash (Bourne-Again SHell)​​​​dash (Debian Almquist SHell)​​​​来源​​G…...