当前位置: 首页 > news >正文

【C++】C++11下线程库

C++11下线程库

  • 1. thread类的简单介绍
  • 2.线程函数参数
  • 3.原子性操作库(atomic)
  • 4.mutex的种类
  • 5. RAII风格加锁解锁
    • 5.1Lock_guard
    • 5.2unique_lock
  • 6.condition_variable

1. thread类的简单介绍

在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的线程,必须包含< thread >头文件。
C++11中线程类

还有一些和线程有关的锁、条件变量、原子操作等。
在这里插入图片描述

C++11线程库本质是对不同平台的线程库进行封装。

先看看线程相关主要的接口

在这里插入图片描述

函数名功能
thread()构造一个线程对象,没有关联任何线程函数,即没有启动任何线程
thread(fn,args1, args2,…)构造一个线程对象,并关联线程函数fn,args1,args2,…为线程函数的参数
get_id()获取线程id
jionable()线程是否还在执行,joinable代表的是一个正在执行中的线程。
jion()该函数调用后会阻塞住线程,当该线程结束后,主线程继续执行
detach()在创建线程对象后马上调用,用于把被创建线程与线程对象分离开,分离的线程变为后台线程,创建的线程的"死活"就与主线程无关

在这里插入图片描述

线程不允许拷贝构造,但支持移动构造。

在这里插入图片描述

也不允许赋值重载。但支持移动赋值。

注意:
1.线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的状态
2.当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。

int main()
{thread t1;return 0;
}

3.当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。
线程函数一般情况下可按照以下三种方式提供:

  • 函数指针
  • lambda表达式
  • 函数对象
void ThreadFunc(int a)
{cout << "Thread1" << a << endl;
}class TF
{
public:void operator()(){cout << "Thread3" << endl;}
};int main()
{// 线程函数为函数指针thread t1(ThreadFunc, 10);// 线程函数为lambda表达式thread t2([] {cout << "Thread2" << endl; });// 线程函数为函数对象TF tf;thread t3(tf);t1.join();t2.join();t3.join();cout << "Main thread!" << endl;return 0;
}

还有在前面说过的创建线程池

int main()
{int n,m;cin>>n>>m;vector<thread> v;v.resize(n);//调用thread默认构造函数,无参的//必须加引用,因为不加引用就是拷贝,而thread没有拷贝构造,只有移动构造for (auto& t : v){//移动赋值t = thread([m] {for (size_t i = 0; i < m; ++i){//这里想要把线程id打印出来,但是需要对象来调get_id();//但这里没有对象怎么办调用呢?//使用this_thread::get_id()cout << this_thread::get_id() << ":" << i << endl;}});}//这里主线程要join,不然主线程结束了进程就结束了for (auto& t : v){//阻塞等待t.join();}return 0;
}

有好多东西是在线程的执行函数里面需要用到的,但是没有线程对象可以用,因此把这写东西写成全局的。所以把一些线程用到的公共的类放到这个命名空间里面

在这里插入图片描述
yield:线程时间片还没有用完,但让出时间片让其他线程先跑
sleep_until:休眠到一个时间点
sleep_for:休眠一个时间段,如休眠3秒,5秒

4.可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效

  • 采用无参构造函数构造的线程对象
  • 线程对象的状态已经转移给其他线程对象
  • 线程已经调用jion或者detach结束

问:
1.进程和线程的区别?
linux有说明

2.多进程域多线程的区别?
linux有说明,这里简单说一下
一个进程出现问题不会影响其他进程,而一个线程出现问题因为线程就是在进程的地址空间运行的它出问题肯定就是进程出现了问题所以会导致整个进程退出。

3.并发与并行的区别?
并行与并发是计算机领域中两个重要的概念,它们描述了多任务处理的不同方式。
并行是指同时执行多个任务,每个任务在不同的处理器上独立运行。在并行计算中,多个任务可以同时进行,从而提高系统的整体处理能力。并行计算通常需要具备多个处理器或者多核处理器来实现。
并发是指多个任务在同一时间段内交替执行,通过时间片轮转等方式实现任务的切换。在并发计算中,多个任务共享同一个处理器,通过快速切换任务的执行来实现多任务的效果。并发计算通常适用于单个处理器或者单核处理器的情况。
简而言之,区别在于并行是同时执行多个任务,而并发是交替执行多个任务

2.线程函数参数

线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参。

void ThreadFunc1(int& x)
{x += 10;
}void ThreadFunc2(int* x)
{*x += 10;
}int main()
{int a = 10;// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际引用的是线程栈中的拷贝thread t1(ThreadFunc1, a);t1.join();cout << a << endl;// 如果想要通过形参改变外部实参时,必须借助std::ref()函数thread t2(ThreadFunc1, std::ref(a));t2.join();cout << a << endl;// 地址的拷贝thread t3(ThreadFunc2, &a);t3.join();cout << a << endl;return 0;
}

注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数

3.原子性操作库(atomic)

多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:

两个线程对共享变量进行++,可能会出现线程不安全的问题。

int val = 0;void Func1(int n)
{for (size_t i = 0; i < n; ++i){++val;}
}void Func2(int n)
{for (size_t i = 0; i < n; ++i){++val;}
}int main()
{thread t1(Func1, 10000);thread t2(Func2, 20000);t1.join();t2.join();cout << val << endl;return 0;
}

在这里插入图片描述

比较好的解决方法就是加锁。

在这里插入图片描述

在这里插入图片描述

#include<mutex>mutex mtx;
int val = 0;void Func1(int n)
{for (size_t i = 0; i < n; ++i){mtx.lock();++val;mtx.unlock();}
}void Func2(int n)
{for (size_t i = 0; i < n; ++i){mtx.lock();++val;mtx.unlock();}
}int main()
{thread t1(Func1, 10000);thread t2(Func2, 20000);t1.join();t2.join();cout << val << endl;return 0;
}

加锁之后就是线程安全的了。

在这里插入图片描述

这把锁加在里面好,还是外面好呢?这个等会在说,先看下面的。两个线程能不能同时执行同一个函数,会不会出现其他问题呢?其实学过linux线程都知道是可以的。但为什么呢?

#include<mutex>mutex mtx;
int val = 0;void Func1(int n)
{for (size_t i = 0; i < n; ++i){mtx.lock();++val;mtx.unlock();}
}int main()
{thread t1(Func1, 10000);thread t2(Func1, 20000);t1.join();t2.join();cout << val << endl;return 0;
}

为什么两个线程可以执行同一个函数?
因为这个函数编译好是放在代码段的,两个线程都可以去代码段取这个函数。其次最重要的是每个线程都有独立的栈结构,两个线程调用函数要建立自己的栈帧,互不影响。你传的参数放在你的栈帧里,它传的参数放在它的栈帧里。

回到上一个问题,这个锁到底加在外面好还是里面好呢?
对于在锁里的语句短且简单,建议把锁加载外面,因为锁频繁切换也要消耗资源。

void Func1(int n)
{mtx.lock();for (size_t i = 0; i < n; ++i){++val;}mtx.unlock();
}

另一种方式:原子操作
原理很简单,让++变成原子操作。
原子操作都是由CAS提供的,系统一般会提供CAS相关的接口。
CAS本质就是compare and swap
在这里插入图片描述
下面具体看一下原理,看如何是++变成原子操作的。
在这里插入图片描述
这里即使是同时++也只有一个线程能够写回去。
对这里有兴趣的可以看看陈皓大佬的这篇文章。
无锁队列的实现

C++线程库提供atomic就是对CAS以及刚才一系列东西的封装。
在这里插入图片描述
就比如最下面的对++、- -、与、或、异或等这些操作都是原子的。
在这里插入图片描述
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的访问
更为普遍的,程序员可以使用atomic类模板,定义出需要的任意原子类型。

atmoic<T> t;    // 声明一个类型为T的原子类型变量t

注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算符重载默认删除掉了。

#include <atomic>
int main()
{atomic<int> a1(0);//atomic<int> a2(a1);   // 编译失败atomic<int> a2(0);//a2 = a1;               // 编译失败return 0;
}

把上面代码改成这种方式,不仅不需要加锁,而且也是并行运行的。

#include<atomic>atomic<int> aval = 0;void Func1(int n)
{	for (size_t i = 0; i < n; ++i){++aval;}}int main()
{thread t1(Func1, 10000);thread t2(Func1, 20000);t1.join();t2.join();cout << aval << endl;return 0;
}

刚才这种写法还有一些弊端,实际写用不太建议写成全局的。
但是不用全局的也就不是共享资源了,线程执行的函数又拿不到就不涉及线程安全的问题了,这里就体现C++11这里用lambda更好一些。给了lambda就可以定义局部的。因为lambda可以捕捉局部的变量,就可以避免用全局的这样方式。

int main()
{atomic<int> aval = 0;auto func = [&aval](int n) {for (size_t i = 0; i < n; ++i){++aval;}};thread t1(func, 10000);thread t2(func, 20000);t1.join();t2.join();cout << aval << endl;return 0;
}

4.mutex的种类

在C++11中,Mutex总共包了四个互斥量的种类
在这里插入图片描述

1.mutex
在这里插入图片描述

C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用的三个函数:

函数名函数功能
lock()上锁:锁住互斥量
unlock()解锁:释放对互斥量的所有权
try_lock()尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞

在这里插入图片描述

注意,线程函数调用lock()时,可能会发生以下三种情况:

  • 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁
  • 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
  • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)

线程函数调用try_lock()时,可能会发生以下三种情况:

  • 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量
  • 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
  • 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)

注意:
互斥锁不能在递归里面用的,递归里面玩互斥锁就可能死锁
在这里插入图片描述

2. recursive_mutex 递归互斥锁
在这里插入图片描述

允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,释放互斥量时需要调用与该锁层次深度相同次数的unlock(),除此之外,recursive_mutex 的特性和mutex 大致相同。

原理:注意并不是解锁之后再加锁,万一有其他线程在等待,解锁有可能其他线程抢到锁了然后运行,但是并不希望是这样。锁的时候知道是那个线程获得这个锁的,知道这个线程id,等在递归时候看新来的线程跟获取锁的id是不是同一个,如果是同一个,就不在加锁直接走就可以了。

3.timed_mutex
在这里插入图片描述

比mutex多了两个成员函数,try_lock_for(),try_lock_until() 。

  • try_lock_for()
    接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

  • try_lock_until()
    接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。

控制时间通常用下面这个类

在这里插入图片描述
在这里插入图片描述

int main()
{atomic<int> aval = 0;auto func = [&aval](int n) {for (size_t i = 0; i < n; ++i){++aval;this_thread::sleep_for(chrono::milliseconds(2000));cout << aval << endl;}};thread t1(func, 10000);thread t2(func, 20000);t1.join();t2.join();cout << aval << endl;return 0;
}

4.recursive_timed_mutex
这个就不再细说。

5. RAII风格加锁解锁

5.1Lock_guard

在这里插入图片描述
在这里插入图片描述
RAII风格加锁解锁:
构造时加锁,析构时解锁。

int main()
{atomic<int> aval = 0;mutex mtx;auto func = [&aval,&mtx](int n) {for (size_t i = 0; i < n; ++i){{//只在这个作用域加锁出了作用域就自动解锁//可以收到控制加锁范围lock_guard<mutex> lock(mtx);cout <<this_thread::get_id()<<"->"<< aval << endl;}++aval;}};thread t1(func, 10000);thread t2(func, 20000);t1.join();t2.join();cout << aval << endl;return 0;
}

lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。

5.2unique_lock

与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。使用以上类型互斥量实例化
unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题

与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
在这里插入图片描述

  • 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
  • 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
  • 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同)、mutex(返回当前unique_lock所管理的互斥量的指针)。

6.condition_variable

写一个支持两个线程交替打印,一个打印奇数,一个打印偶数

// 支持两个线程交替打印,t1一个打印奇数,t2一个打印偶数,打印到100
int main()
{	int i = 0;thread t1([&] {while (i < 100){if (i % 2){cout << this_thread::get_id() << "->" << i << endl;++i;}}});thread t2([&] {while (i < 100){if (i % 2 == 0){cout << this_thread::get_id() << "->" << i << endl;++i;}}});t1.join();t2.join();return 0;
}

在这里插入图片描述
这个程序有些问题,首先没有100。证明有个程序少跑了一次。可能i是99,t1 if判断之后把i加到100,然后t2在上去while判断不符合,所有就没有打印出100。

那把t2线程,while判断改成<=100,能不能解决问题?
是可以初步解决问题的。

int main()
{int i = 0;thread t1([&] {while (i < 100){if (i % 2){cout << this_thread::get_id() << "->" << i << endl;++i;}}});thread t2([&] {while (i <= 100){if (i % 2 == 0){cout << this_thread::get_id() << "->" << i << endl;++i;}}});t1.join();t2.join();return 0;
}

在这里插入图片描述

这里真正的问题是,效率不好。有这样的可能性。i为0 然后打印i在++,在然后t2时间片到了就切出去了,但t1线程时间片没有到会一直在转,因为i是1然后%2打印i,然后i++,i变成2了。然后i一直是2一直在转,不断的白判断浪费cpu资源。直到t2回来。

这里能不能你完了通知我,我完了通知你。

加锁可不可以?

int main()
{int i = 0;mutex mtx;thread t1([&] {while (i < 100){mtx.lock();cout << this_thread::get_id() << "->" << i << endl;++i;mtx.unlock();}});thread t2([&] {while (i < 100){mtx.lock();cout << this_thread::get_id() << "->" << i << endl;++i;mtx.unlock();		}});t1.join();t2.join();return 0;
}

可以看到光加锁,并不能实现交替打印。

在这里插入图片描述
原因可能是其中一个线程竞争能力太强了,解锁之后又成功加锁,导致另一个线程一直在阻塞等待,所以导致这个情况。

这里最好的方式就是使用环境变量。
在这里插入图片描述
在这里插入图片描述
wait就是等待,notify就是通知。
条件变量并不是线程安全的,需要和锁配合使用。
注意是unique_lock RAII风格的锁。
在这里插入图片描述
这个wait就和linux说过的一样,
在这里插入图片描述
当线程阻塞了就会自动释放这个锁让其他线程去竞争这把锁,一旦被唤醒就要重新申请到这个锁,从这个wait返回就一定是拿到锁往下走。

#include<condition_variable>int main()
{int i = 0;mutex mtx;condition_variable cv;//奇数thread t1([&] {while (i < 100){unique_lock<mutex> lock(mtx);while (i % 2 == 0){cv.wait(lock);}cout << "t1: " << this_thread::get_id() << "->" << i << endl;++i;cv.notify_one();}});//偶数thread t2([&] {while (i <= 100){unique_lock<mutex> lock(mtx);while (i % 2){cv.wait(lock);}cout << "t2: " << this_thread::get_id() << "->" << i << endl;++i;cv.notify_one();}});t1.join();t2.join();return 0;
}
int main()
{int i = 0;mutex mtx;condition_variable cv;bool flag = true;//奇数 -- flag = truethread t1([&] {while (i < 100){unique_lock<mutex> lock(mtx);while (flag == true){cv.wait(lock);//阻塞}cout << "t1: " << this_thread::get_id() << "->" << i << endl;++i;flag = true;cv.notify_one();}});//偶数 -- flag = truethread t2([&] {while (i <= 100){unique_lock<mutex> lock(mtx);while (flag == false){cv.wait(lock);}cout << "t2: " << this_thread::get_id() << "->" << i << endl;++i;flag = false;cv.notify_one();}});t1.join();t2.join();return 0;
}

在这里插入图片描述

第二种wait方式

在这里插入图片描述
在这里插入图片描述
当pred返回false时才会阻塞。返回true不会阻塞。

int main()
{int i = 0;mutex mtx;condition_variable cv;//奇数 -- flag = truethread t1([&] {while (i < 100){unique_lock<mutex> lock(mtx);cv.wait(lock, [&] {return i % 2; });//返回false被阻塞,true不被阻塞cout << "t1: " << this_thread::get_id() << "->" << i << endl;++i;cv.notify_one();}});//偶数 -- flag = truethread t2([&] {while (i <= 100){unique_lock<mutex> lock(mtx);cv.wait(lock, [&] {return !(i % 2); });//返回false被阻塞,true不被阻塞cout << "t2: " << this_thread::get_id() << "->" << i << endl;++i;cv.notify_one();}});t1.join();t2.join();return 0;
}

在这里插入图片描述

相关文章:

【C++】C++11下线程库

C11下线程库 1. thread类的简单介绍2.线程函数参数3.原子性操作库(atomic)4.mutex的种类5. RAII风格加锁解锁5.1Lock_guard5.2unique_lock 6.condition_variable 1. thread类的简单介绍 在C11之前&#xff0c;涉及到多线程问题&#xff0c;都是和平台相关的&#xff0c;比如wi…...

面试经典150题——矩阵置零

​"Dream it. Wish it. Do it." - Unknown 1. 题目描述 2. 题目分析与解析 2.1 思路一——暴力求解 思路一很简单&#xff0c;就是尝试遍历矩阵的所有元素&#xff0c;如果发现值等于0&#xff0c;就把当前行与当前列的值分别置为0。同时我们需要注意&#xff0c;…...

多端开发围炉夜话

文章目录 一、多端开发 一、多端开发 uni-app 官网 UNI-APP中的UI框架&#xff1a;介绍常用的UI框架及其特点 uView UIVant WeappColor UIMint UI uniapp嵌入android原生开发的功能 uniapp使用安卓原生sdk uni-app中的uni.requireNativePlugin...

分治算法总结(Java)

目录 分治算法概述 快速排序 练习1&#xff1a;排序数组 练习2&#xff1a;数组中的第K个最大元素 练习3&#xff1a;最小k个数 归并排序 练习4&#xff1a;排序数组 练习5&#xff1a;交易逆序对的总数 练习6&#xff1a;计算右侧小于当前元素的个数 练习7&#xff1…...

【云原生系列之kubernetes】--Ingress使用

service的缺点&#xff1a; 不支持基于URL等机制对HTTP/HTTPS协议进行高级路由、超时、重试、基于流量的灰度等高级流量治理机制难以将多个service流量统一管理 1.1ingress的概念 ingress是k8s中的一个对象&#xff0c;作用是如何将请求转发到service的规则ingress controlle…...

练习:鼠标类设计之2_类和接口

前言 续鼠标类设计之1&#xff0c;前面解决了鼠标信号问题&#xff0c;这里解决显示问题 引入 鼠标伴随操作系统而生&#xff0c;考虑在屏幕上怎样显示 思路 1>鼠标显示是一个动态效果&#xff0c;所以需要一个“动态效果类”对象&#xff0c;添加进鼠标类的属性里。 在面…...

【程序员英语】【美语从头学】初级篇(入门)(笔记)Lesson 15 At the Department Store 在百货商店

《美语从头学初级入门篇》 注意&#xff1a;被 删除线 划掉的不一定不正确&#xff0c;只是不是标准答案。 文章目录 Lesson 15 At the Department Store 在百货商店会话A会话B笔记 Lesson 15 At the Department Store 在百货商店 会话A A: Can you help me, please? B: Sur…...

linux 安装、删除 JTAG驱动

安装 安装驱动需要sudo访问权限&#xff0c;所以得手动安装。 在petalinux安装目录下&#xff1a; 文件的路径。 cd tools/xsct/data/xicom/cable_drivers/lin64/install_script/install_drivers 然后执行文件 install_drivers。 sudo ./install_drivers安装成功。 删除 …...

CSS的伪类选择器:nth-child()

CSS的伪类选择器:nth-child() CSS的伪类选择器 :nth-child() 是一个非常强大的工具&#xff0c;它允许你根据元素在其父元素中的位置&#xff08;序数&#xff09;来选择特定的子元素。这个选择器可以应用于任何元素&#xff0c;并且可以与类型选择器、类选择器或ID选择器结合…...

python celery使用队列

在celery的配置方法中有个参数叫task_routes&#xff0c;是用来设置不同的任务 消费不同的队列&#xff08;也就是路由&#xff09;。 格式如下&#xff1a; { ‘task name’: { ‘queue’: ‘queue name’ }}直接上代码&#xff0c;简单明了&#xff0c;目录格式如下&#x…...

四非保研之旅

大家好&#xff0c;我是工藤学编程&#xff0c;虽有万分感概&#xff0c;但是话不多说&#xff0c;先直接进入正题&#xff0c;抒情环节最后再说&#xff0c;哈哈哈 写在开头 我的分享是来给大家涨信心的&#xff0c;网上的大佬们都太强了&#xff0c;大家拿我涨涨信心&#…...

基于Java+SpringBoot的旅游路线规划系统(源码+论文)

文章目录 目录 文章目录 前言 一、功能设计 二、功能实现 1.1 前端首页模块的实现 1.2 景点新闻 1.3 景点在线预订 1.4 酒店在线预订 1.5 管理员景点管理 1.6 管理员旅游线路管理 1.7 酒店信息管理 三、库表设计 前言 随着我国的经济的不断发展&#xff0c;现在的一些热门的景…...

AI与测试自动化:未来已来

AI与测试自动化注定融合。软件开发的速度和准确性要求已经远远超出了预期。测试自动化通过重复、详细和数据密集型测试来解决这个问题&#xff0c;确保敏捷和持续交付环境中的软件质量。AI的学习、适应和预测能力以完美的效率和准确性增强了测试自动化。复杂的算法现在充当质量…...

深度学习基础之《TensorFlow框架(6)—张量》

一、张量 1、什么是张量 张量Tensor和ndarray是有联系的&#xff0c;当我们print()打印值的时候&#xff0c;它返回的就是ndarray对象 TensorFlow的张量就是一个n维数组&#xff0c;类型为tf.Tensor。Tensor具有以下两个重要的属性&#xff1a; &#xff08;1&#xff09;typ…...

第三百六十六回

文章目录 1. 概念介绍2. 使用方法2.1 List2.2 Map2.3 Set 3. 示例代码4. 内容总结 我们在上一章回中介绍了"convert包"相关的内容&#xff0c;本章回中将介绍collection.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中介绍的内容是col…...

Fiddler工具 — 18.Fiddler抓包HTTPS请求(一)

1、Fiddler抓取HTTPS过程 第一步&#xff1a;Fiddler截获客户端发送给服务器的HTTPS请求&#xff0c;Fiddler伪装成客户端向服务器发送请求进行握手 。 第二步&#xff1a;服务器发回相应&#xff0c;Fiddler获取到服务器的CA证书&#xff0c; 用根证书&#xff08;这里的根证…...

多租户数据库的缓冲区共享和预分配方案设计

多租户数据库的缓冲区共享和预分配方案设计 文章目录 多租户数据库的缓冲区共享和预分配方案设计简介初始化输入交互输出输入部分的输出交互部分的输出 评分注意点语言要求需要使用的模块系统框架图方案设计初始化阶段交互阶段 修改进度规划最终代码 简介 云计算技术使企业能够…...

C++:C++入门基础

创作不易&#xff0c;感谢三连 &#xff01;&#xff01; 一、什么是C C语言是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要高度的抽象和建模时&#xff0c;C语言则不合适。为了解决软件危机&#xff…...

利用System.Web.HttpRuntime.Cache制作缓存工具类

用到的依赖介绍 当谈到 ASP.NET 中的缓存管理时&#xff0c;常涉及到以下三个类&#xff1a;CacheDependency、HttpRuntime.Cache 和 System.Web.Caching。 CacheDependency&#xff08;缓存依赖项&#xff09;&#xff1a; CacheDependency 类用于指定一个或多个文件或目录作…...

266.【华为OD机试真题】抢7游戏(深度优先搜索DFS-JavaPythonC++JS实现)

🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-抢7游戏二.解题思路三.题解代码Python题解代码…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...