一文弄明白KeyedProcessFunction函数
引言
KeyedProcessFunction是Flink用于处理KeyedStream的数据集合,它比ProcessFunction拥有更多特性,例如状态处理和定时器功能等。接下来就一起来了解下这个函数吧
正文
了解一个函数怎么用最权威的地方就是 官方文档 以及注解,KeyedProcessFunction的注解如下
/*** A keyed function that processes elements of a stream.** <p>For every element in the input stream {@link #processElement(Object, Context, Collector)} is* invoked. This can produce zero or more elements as output. Implementations can also query the* time and set timers through the provided {@link Context}. For firing timers {@link #onTimer(long,* OnTimerContext, Collector)} will be invoked. This can again produce zero or more elements as* output and register further timers.** <p><b>NOTE:</b> Access to keyed state and timers (which are also scoped to a key) is only* available if the {@code KeyedProcessFunction} is applied on a {@code KeyedStream}.** <p><b>NOTE:</b> A {@code KeyedProcessFunction} is always a {@link* org.apache.flink.api.common.functions.RichFunction}. Therefore, access to the {@link* org.apache.flink.api.common.functions.RuntimeContext} is always available and setup and teardown* methods can be implemented. See {@link* org.apache.flink.api.common.functions.RichFunction#open(org.apache.flink.configuration.Configuration)}* and {@link org.apache.flink.api.common.functions.RichFunction#close()}.*/
上面简单来说就是以下四点
- Flink中输入流中的每一条数据都会触发KeyedProcessFunction类的processElement方法调用
- 通过这个方法的Context参数可以设置定时器,在开启定时器后会程序会定时调用onTimer方法
- 由于KeyedProcessFunction实现了RichFunction接口,因此是可以通过RuntimeContext上下文对象管理状态state的开启和释放
- 需要注意的是,只有在KeyedStream里才能够访问state和定时器,通俗点来说就是这个函数要用在keyBy这个函数的后面
processElement方法解析
- Flink会调用processElement方法处理输入流中的每一条数据
- KeyedProcessFunction.Context参数可以用来读取以及更新内部状态state
- 这个KeyedProcessFunction跟其他function一样通过参数中的Collector对象以回写的方式返回数据
onTimer方法解析:在启用TimerService服务时会定时触发此方法,一般会在processElement方法中开启TimerService服务
以上就是这个函数的基本知识,接下来就通过实战来熟悉下它的使用
实战简介
本次实战的目标是学习KeyedProcessFunction,内容如下:
- 监听本机7777端口读取字符串
- 将每个字符串用空格分隔,转成Tuple2实例,f0是分隔后的单词,f1等于1
- 将Tuple2实例集合通过f0字段分区,得到KeyedStream
- KeyedSteam通过自定义KeyedProcessFunction处理
- 自定义KeyedProcessFunction的作用,是记录每个单词最新一次出现的时间,然后建一个十秒的定时器进行触发
使用代码例子
首先定义pojo类
public class CountWithTimestampNew {private String key;private long count;private long lastQuestTimestamp;public long getAndIncrementCount() {return ++count;}public String getKey() {return key;}public void setKey(String key) {this.key = key;}public long getCount() {return count;}public void setCount(long count) {this.count = count;}public long getLastQuestTimestamp() {return lastQuestTimestamp;}public void setLastQuestTimestamp(long lastQuestTimestamp) {this.lastQuestTimestamp = lastQuestTimestamp;}
}
接着实现KeyedProcessFunction类
public class CountWithTimeoutKeyProcessFunctionNew extends KeyedProcessFunction<Tuple, Tuple2<String, Integer>, Tuple2<String, Long>> {private ValueState<CountWithTimestampNew> state;@Overridepublic void open(Configuration parameters) throws Exception {state = getRuntimeContext().getState(new ValueStateDescriptor<CountWithTimestampNew>("sherlock-state", CountWithTimestampNew.class));}// 实现数据处理逻辑的地方@Overridepublic void processElement(Tuple2<String, Integer> value, Context ctx, Collector<Tuple2<String, Long>> out) throws Exception {Tuple currentKey = ctx.getCurrentKey();CountWithTimestampNew countWithTimestampNew = state.value();if (countWithTimestampNew == null) {countWithTimestampNew = new CountWithTimestampNew();countWithTimestampNew.setKey(value.f0);}countWithTimestampNew.getAndIncrementCount();//更新这个单词最后一次出现的时间countWithTimestampNew.setLastQuestTimestamp(ctx.timestamp());//单词之间不会互相覆盖吗?推测state对象是跟key绑定,针对每一个不同的key KeyedProcessFunction会创建其对应的state对象state.update(countWithTimestampNew);//给当前单词创建定时器,十秒后触发long timer = countWithTimestampNew.getLastQuestTimestamp()+10000;//尝试注释掉看看是否还会触发onTimer方法ctx.timerService().registerProcessingTimeTimer(timer);//打印所有信息,用于确保数据准确性System.out.println(String.format(" 触发processElement方法,当前的key是 %s, 这个单词累加次数是 %d, 上次请求的时间是:%s, timer的时间是: %s",currentKey.getField(0),countWithTimestampNew.getCount(),time(countWithTimestampNew.getLastQuestTimestamp()),time(timer)));}@Overridepublic void onTimer(long timestamp, OnTimerContext ctx, Collector<Tuple2<String, Long>> out) throws Exception {Tuple currentKey = ctx.getCurrentKey();CountWithTimestampNew countWithTimestampNew = state.value();//标记当前元素是否已经连续10s未出现boolean isTimeout = false;if (timestamp >= countWithTimestampNew.getLastQuestTimestamp()+10000 ) {//out.collect(new Tuple2<>(countWithTimestampNew.getKey(), countWithTimestampNew.getCount()));isTimeout = true;}//打印所有信息,用于确保数据准确性System.out.println(String.format(" 触发onTimer方法,当前的key是 %s, 这个单词累加次数是 %d, 上次请求的时间是:%s, timer的时间是: %s, 当前单词是否已超过10秒没有再请求: %s",currentKey.getField(0),countWithTimestampNew.getCount(),time(countWithTimestampNew.getLastQuestTimestamp()),time(timestamp),String.valueOf(isTimeout)));}public static String time(long timeStamp) {return new SimpleDateFormat("yyyy-MM-dd hh:mm:ss").format(new Date(timeStamp));}
}
最后是启动类
public class KeyedProcessFunctionDemo2 {public static void main(String[] args) throws Exception {final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 并行度1env.setParallelism(1);// 处理时间env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);// 监听本地9999端口,读取字符串DataStream<String> socketDataStream = env.socketTextStream("localhost", 7777);// 所有输入的单词,如果超过10秒没有再次出现,都可以通过CountWithTimeoutFunction得到DataStream<Tuple2<String, Long>> timeOutWord = socketDataStream// 对收到的字符串用空格做分割,得到多个单词.flatMap(new SplitterFlatMapFunction())// 设置时间戳分配器,用当前时间作为时间戳.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple2<String, Integer>>() {@Overridepublic long extractTimestamp(Tuple2<String, Integer> element, long previousElementTimestamp) {// 使用当前系统时间作为时间戳return System.currentTimeMillis();}@Overridepublic Watermark getCurrentWatermark() {// 本例不需要watermark,返回nullreturn null;}})// 将单词作为key分区.keyBy(0)// 按单词分区后的数据,交给自定义KeyedProcessFunction处理.process(new CountWithTimeoutKeyProcessFunctionNew());// 所有输入的单词,如果超过10秒没有再次出现,就在此打印出来timeOutWord.print();env.execute("ProcessFunction demo : KeyedProcessFunction");}
}
演示
在启动服务前,先通过linux指令监听端口 nc -lk 7777
-
启动Flink服务后,往7777端口里面发送数据
-
通过IDEA的终端可以看到有日志输出,可以看到在发送消息的时候第一条日志立马打印出来并在10秒后输出第二条日志
-
那么咱们尝试连续发送两条Hello呢,可以看到累加器会持续累加,并且会触发两次onTimer方法,也就是每一条消息都会触发一次。由于连续发送两条,因此可以看得到第三行日志的末尾是false,说明收到第一条后的10秒内又有相同的消息进来。第二条是ture说明在收到第二条消息后的10秒内没有消息进来
-
再输入点其他的试试
-
通过输出可以看到这些单词的计数器又从0开始,说明每一个Key都对应一个状态
思考题
- open方法会在哪里进行调用,KeyedProcessFunction整个类的完整调用逻辑是怎么样的
- registerProcessingTimeTimer和registerEventTimeTimer的差异是什么
参考资料
- https://blog.csdn.net/boling_cavalry/article/details/106299167
- https://blog.csdn.net/lujisen/article/details/105510532
- https://blog.csdn.net/qq_31866793/article/details/102831731
相关文章:

一文弄明白KeyedProcessFunction函数
引言 KeyedProcessFunction是Flink用于处理KeyedStream的数据集合,它比ProcessFunction拥有更多特性,例如状态处理和定时器功能等。接下来就一起来了解下这个函数吧 正文 了解一个函数怎么用最权威的地方就是 官方文档 以及注解,KeyedProc…...

alibabacloud学习笔记06(小滴课堂)
讲Sentinel流量控制详细操作 基于并发线程进行限流配置实操 在浏览器打开快速刷新会报错 基于并发线程进行限流配置实操 讲解 微服务高可用利器Sentinel熔断降级规则 讲解服务调用常见的熔断状态和恢复 讲解服务调用熔断例子 我们写一个带异常的接口:...

Code Composer Studio (CCS) - Licensing Information
Code Composer Studio [CCS] - Licensing Information 1. Help -> Code Composer Studio Licensing Information2. Upgrade3. Specify a license fileReferences 1. Help -> Code Composer Studio Licensing Information 2. Upgrade 3. Specify a license file …...

uniapp引入微信小程序直播组件
方法1.小程序跳转视频号直播 微信小程序跳转到视频号 1.1微信开放平台注册 https://open.weixin.qq.com/ 2.2 方法2.使用小程序提供的直播组件 参考 微信小程序跳转视频号直播 小程序直播官方文档 https://developers.weixin.qq.com/miniprogram/dev/component/live-play…...
五个简单的C#编程案例
案例一:Hello, World! csharp using System; class Program { static void Main() { Console.WriteLine("Hello, World!"); } } 这个案例是最基础的C#程序,它打印出“Hello, World!”到控制台。每个C#程…...

Zlibrary低调官宣2024年最新网址,国内可直接访问,免费下载海量电子书籍
最近过节,文章也没怎么写,明天要上班了,今天写篇文章做个预热。 春节期间,“知识大航海”群里,有位群友分享了一个Zlibrary的最新地址,感谢这位群友妹妹的热心分享,这个地址国内可以直接访问。 …...
Android 开机启动
一、添加权限 <uses-permission android:name"android.permission.RECEIVE_BOOT_COMPLETED"/> 二、写一个广播接收器 public class BootReceiver extends BroadcastReceiver {Overridepublic void onReceive(Context context, Intent intent) {if(Intent.ACT…...
二叉树相关算法需了解汇总-基础算法操作
文章目录 144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历102.二叉树的层序遍历107.二叉树的层次遍历倒序199.二叉树的右视图637.二叉树的层平均值429.N叉树的层序遍历515.在每个树行中找最大值116.填充每个节点的下一个右侧节点指针104.二叉树的最大深度111.二叉…...

万字干货-京东零售数据资产能力升级与实践
开篇 京东自营和商家自运营模式,以及伴随的多种运营视角、多种组合计算、多种销售属性等数据维度,相较于行业同等量级,数据处理的难度与复杂度都显著增加。如何从海量的数据模型与数据指标中提升检索数据的效率,降低数据存算的成…...
探索前端框架的世界:一场前端之旅
在网络世界中,网页开发领域的一颗明星是前端框架。这些框架为开发者提供了丰富的工具和技术,帮助他们构建出漂亮、高效的网页应用。现在,让我们随着小明的故事一起来探索一下吧。 小明的梦想 小明是一位年轻有为的前端开发者,他…...
class complex
class complex from C_OOP_base1_houjie complex.h #ifndef __COMPLEX__ // 防卫式声明 guard; 名称自定义 #define __COMPLEX__// 0. forward declarations class complex;complex& __doapl (complex* ths, const complex& r);// 1. class declarations class compl…...
数据库系统概论整理与总结
数据库系统概论 第一章:绪论 四个基本概念 四个概念 数据:Data 数据库:DataBase 数据库管理系统:DBMS 数据库系统:DBS 打个比喻,比如说菜鸟物流: Data:快递 DB:物流厂库 DBMS:对…...

打通新势力NAS权限壁垒,绿联私有云安装Portainer,实现更强大的Docker功能
打通新势力NAS权限壁垒,绿联私有云安装Portainer,实现更强大的Docker功能 对于国产新势力NAS来说,因为安全问题并没有完全开放SSH权限,所以还不能和传统NAS那样直接通过Docker run命令来部署容器,同时,对于…...

前端基础自学整理|DOM树
DOM,文档对象模型(Document Object Model),简单的说,DOM是一种理念,一种思想,一个与系统平台和编程语言无关的接口,一种方法, 使 Web开发人员可以访问HTML元素!不是具体方…...
RedisDesktopManager无法远程连接到Linux虚拟机中Redis的docker容器的一种解决方案
1.问题描述 除了RedisDesktopManager以外,使用java代码也无法连接到centos7虚拟机中的docker容器中的Redis ,按照网上其他博主的解决方案,在排除Linux防火墙问题,端口映射问题,redis.conf配置文件问题以后,…...
HarmonyOS 权限 介绍
权限说明 权限等级 根据权限对于不同等级应用有不同的开放范围,权限类型对应分为以下三种,等级依次提高。 normal权限 normal 权限允许应用访问超出默认规则外的普通系统资源。 这些系统资源的开放(包括数据和功能)对用户隐私以及…...
算法训练营day33(补),复习二叉树1
// 889. 根据前序和后序遍历构造二叉树 // 前序中左右 后序遍历左右中 func constructFromPrePost(preorder []int, postorder []int) *TreeNode { if len(preorder) 0 { return nil } root : &TreeNode{} root.Val preorder[0] //前序数组去掉root节点 preorder pre…...
k8s-权限管理
1. 身份认证 我们在目前的k8s集群环境里面,只能在master节点上执行kubectl的一些命令,在其他节点上执行就会报错 # 看一下是不是 [rootnode1 ~]# kubectl get nodes E0220 12:50:15.695133 6091 memcache.go:238] couldnt get current server API gro…...

四.QT5工具安装和环境变量的配置
1.以管理员身份运行安装包 2.登录qt账号,点击【next】 3.选中同意 4.选择安装目录,注意不能有中文和空格 5.勾选 64位 mingw。点击【next】,等待安装完成 6.配置环境变量...

为什么需要MDL锁
点击上方蓝字关注我 在数据库管理中,元数据(metadata)的保护至关重要,而MySQL中的"元数据锁"(MDL锁)就是它的守护者。 1. 什么是MDL锁MDL锁,全名Metadata Lock,是MySQL中…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...