当前位置: 首页 > news >正文

LeetCode206: 反转链表.

题目描述
给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。

示例
在这里插入图片描述

解题方法
假设链表为 1→2→3→∅,我们想要把它改成∅←1←2←3。在遍历链表时,将当前节点的 next指针改为指向前一个节点。由于节点没有引用其前一个节点,因此必须事先存储其前一个节点。在更改引用之前,还需要存储后一个节点。最后返回新的头引用。

代码

//*
// * Definition for singly-linked list.
// * struct ListNode {
// *     int val;
// *     ListNode *next;
// *     ListNode() : val(0), next(nullptr) {}
// *     ListNode(int x) : val(x), next(nullptr) {}
// *     ListNode(int x, ListNode *next) : val(x), next(next) {}
// * };
// 
class Solution {
public:ListNode* reverseList(ListNode* head) {ListNode* curr = head;ListNode* prev = nullptr;while (curr) {ListNode* next = curr->next;curr->next = prev;prev = curr;curr = next;}return prev;}
};	

相关文章:

LeetCode206: 反转链表.

题目描述 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 解题方法 假设链表为 1→2→3→∅,我们想要把它改成∅←1←2←3。在遍历链表时,将当前节点的 next指针改为指向前一个节点。由于节点没有引用其前一…...

高级统计方法 第1次作业

概念 1. 请解释什么是P值,怎么计算p值,p值结果怎么理解,p值有哪些应用......? (a)什么是P值 P值是一种用来判定假设检验结果的一个参数,它描述了在原假设为真的情况下,比所得到的…...

spinalhdl,vivado,fpga

https://spinalhdl.github.io/SpinalDoc-RTD/master spinal hdl sudo apt install openjdk-17-jdk scala curl echo “deb https://repo.scala-sbt.org/scalasbt/debian all main” | sudo tee /etc/apt/sources.list.d/sbt.list echo “deb https://repo.scala-sbt.org/scal…...

Tomcat线程池原理(下篇:工作原理)

文章目录 前言正文一、执行线程的基本流程1.1 JUC中的线程池执行线程1.2 Tomcat 中线程池执行线程 二、被改造的阻塞队列2.1 TaskQueue的 offer(...)2.2 TaskQueue的 force(...) 三、总结 前言 Tomcat 线程池,是依据 JUC 中的线程池 ThreadPoolExecutor 重新自定义…...

【服务器数据恢复】通过reed-solomon算法恢复raid6数据的案例

服务器数据恢复环境: 一台网站服务器中有一组由6块磁盘组建的RAID6磁盘阵列,操作系统层面运行MySQL数据库和存放一些其他类型文件。 服务器故障: 该服务器在工作过程中,raid6磁盘阵列中有两块磁盘先后离线,不知道是管理…...

LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序

【LetMeFly】2583.二叉树中的第 K 大层和:层序遍历 排序 力扣题目链接:https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/ 给你一棵二叉树的根节点 root 和一个正整数 k 。 树中的 层和 是指 同一层 上节点值的总和。 返回树中第 k …...

element ui 安装 简易过程 已解决

我之所以将Element归类为Vue.js,其主要原因是Element是(饿了么团队)基于MVVM框架Vue开源出来的一套前端ui组件。我最爱的就是它的布局容器!!! 下面进入正题: 1、Element的安装 首先你需要创建…...

websoket

WebSockets 是一种先进的技术。它可以在用户的浏览器和服务器之间打开交互式通信会话。你可以向服务器发送消息并接收事件驱动的响应&#xff0c;而无需通过轮询服务器的方式以获得响应&#xff0c;比较典型的应用场景就是即时通讯&#xff08;聊天&#xff09;系统。 <!DOC…...

案例:微服务从Java/SpringBoot迁移到Golan

基于 Java 的微服务&#xff0c;特别是那些使用 Spring Boot 的微服务&#xff0c;长期以来因其强大的功能和广泛的社区支持而闻名。Spring Boot 的约定优于配置方法简化了微服务的部署和开发&#xff0c;提供了大量开箱即用的功能&#xff0c;例如自动配置、独立功能和简单的依…...

小波变换模拟

小波变换是一种信号处理技术&#xff0c;通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用&#xff0c;可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。 MATLAB中提供了用于二维离散小波变换的…...

cv::Mat图像操作

图像读写 //include header #include <opencv2/imgcodecs.hpp>/** Currently, the following file formats are supported: Windows bitmaps - *.bmp, *.dib (always supported) JPEG files - *.jpeg, *.jpg, *.jpe (see the Note section) JPEG 2000 files - *.jp2 (s…...

【机器学习基础】一元线性回归(适合初学者的保姆级文章)

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习 欢迎订阅&#xff01;后面的内容会越来越有意思~ &#x1f4a1;往期推荐&#xff1a; 【机器学习基础】机器学习入门&#xff08;1&#xff09; 【机器学习基…...

2024年软件测试岗位-面试

第一部分&#xff1a; 1、自我介绍&#xff1a;简历写到的快速描述&#xff0c;学校、学历、工作经验等&#xff08;注意&#xff1a;不要过度优化简历&#xff0c;你不写别人可能会问&#xff0c;但你写了别人一定会问&#xff01;&#xff09; 第二部分&#xff1a; 1、功能测…...

【坑】Spring Boot整合MyBatis,一级缓存失效

一、Spring Boot整合MyBatis&#xff0c;一级缓存失效 1.1、概述 MyBatis一级缓存的作用域是同一个SqlSession&#xff0c;在同一个SqlSession中执行两次相同的查询&#xff0c;第一次执行完毕后&#xff0c;Mybatis会将查询到的数据缓存起来&#xff08;缓存到内存中&#xf…...

J7 - 对于ResNeXt-50算法的思考

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 J6周有一段代码如下 思考过程 首先看到这个问题的描述&#xff0c;想到的是可能使用了向量操作的广播机制然后就想想办法验证一下&…...

R3F(React Three Fiber)基础篇

之前一直在做ThreeJS方向&#xff0c;整理了两篇R3F&#xff08;React Three Fiber&#xff09;的文档&#xff0c;这是基础篇&#xff0c;如果您的业务场景需要使用R3F&#xff0c;您又对R3F不太了解&#xff0c;或者不想使用R3F全英文文档&#xff0c;您可以参考一下这篇&…...

torch\tensorflow在大语言模型LLM中的作用

文章目录 torch\tensorflow在大语言模型LLM中的作用 torch\tensorflow在大语言模型LLM中的作用 在大型语言模型&#xff08;LLM&#xff09;中&#xff0c;PyTorch和TensorFlow这两个深度学习框架起着至关重要的作用。它们为构建、训练和部署LLM提供了必要的工具和基础设施。 …...

设计模式-创建型模式-单例模式

0 引言 创建型模式&#xff08;Creational Pattern&#xff09;关注对象的创建过程&#xff0c;是一类最常用的设计模式&#xff0c;每个创建型模式都通过采用不同的解决方案来回答3个问题&#xff1a;创建什么&#xff08;What&#xff09;&#xff0c;由谁创建&#xff08;W…...

备战蓝桥杯—— 双指针技巧巧答链表1

对于单链表相关的问题&#xff0c;双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决&#xff1a; 合并两个有序链表&#xff1a; 使用两个指针分别指向两个链表的头部&#xff0c;逐一比较节点的值&#xff0c;将较小的节点链接到结果链表…...

微信小程序返回上一级页面并自动刷新数据

文章目录 前言一、获取小程序栈二、生命周期触发总结 前言 界面由A到B&#xff0c;在由B返回A&#xff0c;触发刷新动作 一、获取小程序栈 界面A代码 shuaxin(){//此处可进行接口请求从而实现更新数据的效果console.log("刷新本页面数据啦")},界面B代码 // 返回触…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...