当前位置: 首页 > news >正文

(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频:https://www.bilibili.com/video/BV1Vg41197ew/?vd_source=7a1a0bc74158c6993c7355c5490fc600

参考资料(半正定矩阵的定义):https://baike.baidu.com/item/%E5%8D%8A%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5/2152711?fr=ge_ala


看看半正定矩阵的定义:
在这里插入图片描述

正定矩阵是 > 0,半正定矩阵是 >= 0

根据定义来看,半正定矩阵也有 “实对称矩阵” 的前提条件


或许我们可以考虑 半正定矩阵性质 和 “特征值特性” 之间的关系,证明方法可以参考之前 “正定矩阵的特征值特性” 的证明方法

首先大胆假设:半正定矩阵 <=> 特征值都 >= 0

那么,设 半正定矩阵 A

先试着证明 半正定矩阵 => 特征值都 >= 0:

  • 对于非零任意特征向量 x, x’ A x = x’ (lamda) x = (lamda) x’x >= 0
  • 由于特征向量 x 是非零向量,所以 (lamda) >= 0 (可以为 0)
  • 这个方向证明完毕

再试着证明 特征值都 >= 0 ===> 半正定矩阵

  • 对于任意一个非零向量 x,x’ A x = x’ Q’ (hat) Q x (这是正交相似对角化) (其中 (hat) 是对角矩阵,由于 A 的特征值组成)
  • x’ A x = x’ Q’ (hat) Q x = (Qx)’ (hat) (Qx) (其中 (hat) 是对角矩阵,由 A 的特征值组成)
  • 由于 x 是非零向量,Q是正交矩阵,所以 (Qx) 是非零向量
  • 其中 (hat) 是对角矩阵,对角线上元素由 A 的特征值 (lamda) 组成,(lamda) >= 0,因此 (hat) 也是半正定矩阵
  • 于是, (Qx)’ (hat) (Qx) >= 0
  • 所以 x’ A x >= 0
  • 因此,矩阵 A 是半正定矩阵
  • 证明完毕

up主给的笔记有误,勘误如下:
在这里插入图片描述

如下图是判断正定负定、半正定半负定的方法
不对!不对! up 主错了!!!
对角线上的元素有 0 元素,依然可以是半正定矩阵
我们在后面看个例子
在这里插入图片描述


栗子在这里:
在这里插入图片描述

相关文章:

(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频&#xff1a;https://www.bilibili.com/video/BV1Vg41197ew/?vd_source7a1a0bc74158c6993c7355c5490fc600 参考资料(半正定矩阵的定义)&#xff1a;https://baike.baidu.com/item/%E5%8D%8A%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5/2152711?frge_ala 看看半正定矩阵的…...

七、矩阵的初等变换

目录 -1. 介绍 0、增广矩阵&#xff1a; 1、初等变换的性质&#xff1a; ​编辑2、矩阵初等变换的分类&#xff1a; 2.1 普通的行阶梯矩阵&#xff1a; 2.2 、行最简形矩阵&#xff1a; 2.3、标准形矩阵&#xff1a; 3、初等变换的定理&#xff1a; 4、初等变换的应用&…...

CSS background-size

background-size 菜鸟教程 CSS3 background-size 属性 MDN Web 开发技术>CSS&#xff1a;层叠样式表>background-size CSS的background 背景图片自动适应元素大小,实现img的默认效果 background-size:100% 100%&#xff1b; 在CSS中&#xff0c;background-size属性用…...

【机器学习】特征工程之特征选择

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…...

Java中PDF文件传输有哪些方法?

专栏集锦&#xff0c;大佬们可以收藏以备不时之需&#xff1a; Spring Cloud 专栏&#xff1a;http://t.csdnimg.cn/WDmJ9 Python 专栏&#xff1a;http://t.csdnimg.cn/hMwPR Redis 专栏&#xff1a;http://t.csdnimg.cn/Qq0Xc TensorFlow 专栏&#xff1a;http://t.csdni…...

前后端分离Vue+ElementUI+nodejs蛋糕甜品商城购物网站95m4l

本文主要介绍了一种基于windows平台实现的蛋糕购物商城网站。该系统为用户找到蛋糕购物商城网站提供了更安全、更高效、更便捷的途径。本系统有二个角色&#xff1a;管理员和用户&#xff0c;要求具备以下功能&#xff1a; &#xff08;1&#xff09;用户可以修改个人信息&…...

Pytorch 复习总结 3

Pytorch 复习总结&#xff0c;仅供笔者使用&#xff0c;参考教材&#xff1a; 《动手学深度学习》Stanford University: Practical Machine Learning 本文主要内容为&#xff1a;Pytorch 多层感知机。 本文先介绍了多层感知机的用法&#xff0c;再就训练过程中经常出现的过拟…...

2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;特种作业人员操作证考试大纲和&#xff08;质检局&#xff09;特…...

go使用trpc案例

1.go下载trpc go install trpc.group/trpc-go/trpc-cmdline/trpclatest 有报错的话尝试配置一些代理&#xff08;选一个&#xff09; go env -w GOPROXYhttps://goproxy.cn,direct go env -w GOPROXYhttps://goproxy.io,direct go env -w GOPROXYhttps://goproxy.baidu.com/…...

nodejs+vue+ElementUi废品废弃资源回收系统

系统主要是以后台管理员管理为主。管理员需要先登录系统然后才可以使用本系统&#xff0c;管理员可以对系统用户管理、用户信息管理、回收站点管理、站点分类管理、站点分类管理、留言板管理、系统管理进行添加、查询、修改、删除&#xff0c;以保障废弃资源回收系统系统的正常…...

【Java程序设计】【C00277】基于Springboot的招生管理系统(有论文)

基于Springboot的招生管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的招生管理系统 本系统分为系统功能模块、管理员功能模块以及学生功能模块。 系统功能模块&#xff1a;在系统首页可以查看首页、专业…...

汇编语言与接口技术实践——秒表

1. 设计要求 基于 51 开发板,利用键盘作为按键输入,将数码管作为显示输出,实现电子秒表。 功能要求: (1)计时精度达到百分之一秒; (2)能按键记录下5次时间并通过按键回看 (3)设置时间,实现倒计时,时间到,数码管闪烁 10 次,并激发蜂鸣器,可通过按键解除。 2. 设计思…...

【数据结构与算法】(19)高级数据结构与算法设计之 图 拓扑排序 最短路径 最小生成树 不相交集合(并查集合)代码示例

目录 6) 拓扑排序KahnDFS 7) 最短路径DijkstraBellman-FordFloyd-Warshall 8) 最小生成树PrimKruskal 9) 不相交集合&#xff08;并查集合&#xff09;基础路径压缩Union By Size 图-相关题目 6) 拓扑排序 #mermaid-svg-MQhLsXiMwnlUL3q4 {font-family:"trebuchet ms"…...

OSCP靶场--Nickel

OSCP靶场–Nickel 考点(1.POST方法请求信息 2.ftp&#xff0c;ssh密码复用 3.pdf文件密码爆破) 1.nmap扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.237.99 -sV -sC -p- --min-rate 5000 Starting Nmap 7.92 ( https://nmap.org ) at 2024-02-22 04:06 EST Nm…...

新建工程——库函数版

新建工程——库函数版 s t e p I : 新建工程文件夹 \bf{stepI:新建工程文件夹} stepI:新建工程文件夹 s t e p I I : K e i l 5 新建工程 \bf{stepII:Keil5新建工程} stepII:Keil5新建工程 s t e p I I I : 最终得到工程文件 \bf{stepIII:最终得到工程文件} stepIII:最终得到工…...

java 数据结构栈和队列

目录 栈(Stack) 栈的使用 栈的模拟实现 栈的应用场景 队列(Queue) 队列的使用 队列模拟实现 循环队列 双端队列 用队列实现栈 用栈实现队列 栈(Stack) 什么是栈&#xff1f; 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操…...

#LLM入门|Prompt#1.8_聊天机器人_Chatbot

聊天机器人设计 以会话形式进行交互&#xff0c;接受一系列消息作为输入&#xff0c;并返回模型生成的消息作为输出。原本设计用于简便多轮对话&#xff0c;但同样适用于单轮任务。 设计思路 个性化特性&#xff1a;通过定制模型的训练数据和参数&#xff0c;使机器人拥有特…...

LeetCode 2476.二叉搜索树最近节点查询:中序遍历 + 二分查找

【LetMeFly】2476.二叉搜索树最近节点查询&#xff1a;中序遍历 二分查找 力扣题目链接&#xff1a;https://leetcode.cn/problems/closest-nodes-queries-in-a-binary-search-tree/ 给你一个 二叉搜索树 的根节点 root &#xff0c;和一个由正整数组成、长度为 n 的数组 qu…...

选座位 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 疫情期间&#xff0c;需要大家保证一定的社交距离&#xff0c;公司组织开交流会议&#xff0c;座位有一排共N个座位&#xff0c;编号分别为[0…N-1]&#xff0c;要…...

【微服务】mybatis typehandler使用详解

目录 一、前言 二、TypeHandler简介 2.1 什么是TypeHandler 2.1.1 TypeHandler特点 2.2 TypeHandler原理 2.3 mybatis自带的TypeHandler 三、环境准备 3.1 准备一张数据表 3.2 搭建一个springboot工程 3.2.1 基础依赖如下 3.2.2 核心配置文件 3.2.3 测试接口 四、T…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...