当前位置: 首页 > news >正文

(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频:https://www.bilibili.com/video/BV1Vg41197ew/?vd_source=7a1a0bc74158c6993c7355c5490fc600

参考资料(半正定矩阵的定义):https://baike.baidu.com/item/%E5%8D%8A%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5/2152711?fr=ge_ala


看看半正定矩阵的定义:
在这里插入图片描述

正定矩阵是 > 0,半正定矩阵是 >= 0

根据定义来看,半正定矩阵也有 “实对称矩阵” 的前提条件


或许我们可以考虑 半正定矩阵性质 和 “特征值特性” 之间的关系,证明方法可以参考之前 “正定矩阵的特征值特性” 的证明方法

首先大胆假设:半正定矩阵 <=> 特征值都 >= 0

那么,设 半正定矩阵 A

先试着证明 半正定矩阵 => 特征值都 >= 0:

  • 对于非零任意特征向量 x, x’ A x = x’ (lamda) x = (lamda) x’x >= 0
  • 由于特征向量 x 是非零向量,所以 (lamda) >= 0 (可以为 0)
  • 这个方向证明完毕

再试着证明 特征值都 >= 0 ===> 半正定矩阵

  • 对于任意一个非零向量 x,x’ A x = x’ Q’ (hat) Q x (这是正交相似对角化) (其中 (hat) 是对角矩阵,由于 A 的特征值组成)
  • x’ A x = x’ Q’ (hat) Q x = (Qx)’ (hat) (Qx) (其中 (hat) 是对角矩阵,由 A 的特征值组成)
  • 由于 x 是非零向量,Q是正交矩阵,所以 (Qx) 是非零向量
  • 其中 (hat) 是对角矩阵,对角线上元素由 A 的特征值 (lamda) 组成,(lamda) >= 0,因此 (hat) 也是半正定矩阵
  • 于是, (Qx)’ (hat) (Qx) >= 0
  • 所以 x’ A x >= 0
  • 因此,矩阵 A 是半正定矩阵
  • 证明完毕

up主给的笔记有误,勘误如下:
在这里插入图片描述

如下图是判断正定负定、半正定半负定的方法
不对!不对! up 主错了!!!
对角线上的元素有 0 元素,依然可以是半正定矩阵
我们在后面看个例子
在这里插入图片描述


栗子在这里:
在这里插入图片描述

相关文章:

(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频&#xff1a;https://www.bilibili.com/video/BV1Vg41197ew/?vd_source7a1a0bc74158c6993c7355c5490fc600 参考资料(半正定矩阵的定义)&#xff1a;https://baike.baidu.com/item/%E5%8D%8A%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5/2152711?frge_ala 看看半正定矩阵的…...

七、矩阵的初等变换

目录 -1. 介绍 0、增广矩阵&#xff1a; 1、初等变换的性质&#xff1a; ​编辑2、矩阵初等变换的分类&#xff1a; 2.1 普通的行阶梯矩阵&#xff1a; 2.2 、行最简形矩阵&#xff1a; 2.3、标准形矩阵&#xff1a; 3、初等变换的定理&#xff1a; 4、初等变换的应用&…...

CSS background-size

background-size 菜鸟教程 CSS3 background-size 属性 MDN Web 开发技术>CSS&#xff1a;层叠样式表>background-size CSS的background 背景图片自动适应元素大小,实现img的默认效果 background-size:100% 100%&#xff1b; 在CSS中&#xff0c;background-size属性用…...

【机器学习】特征工程之特征选择

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…...

Java中PDF文件传输有哪些方法?

专栏集锦&#xff0c;大佬们可以收藏以备不时之需&#xff1a; Spring Cloud 专栏&#xff1a;http://t.csdnimg.cn/WDmJ9 Python 专栏&#xff1a;http://t.csdnimg.cn/hMwPR Redis 专栏&#xff1a;http://t.csdnimg.cn/Qq0Xc TensorFlow 专栏&#xff1a;http://t.csdni…...

前后端分离Vue+ElementUI+nodejs蛋糕甜品商城购物网站95m4l

本文主要介绍了一种基于windows平台实现的蛋糕购物商城网站。该系统为用户找到蛋糕购物商城网站提供了更安全、更高效、更便捷的途径。本系统有二个角色&#xff1a;管理员和用户&#xff0c;要求具备以下功能&#xff1a; &#xff08;1&#xff09;用户可以修改个人信息&…...

Pytorch 复习总结 3

Pytorch 复习总结&#xff0c;仅供笔者使用&#xff0c;参考教材&#xff1a; 《动手学深度学习》Stanford University: Practical Machine Learning 本文主要内容为&#xff1a;Pytorch 多层感知机。 本文先介绍了多层感知机的用法&#xff0c;再就训练过程中经常出现的过拟…...

2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;特种作业人员操作证考试大纲和&#xff08;质检局&#xff09;特…...

go使用trpc案例

1.go下载trpc go install trpc.group/trpc-go/trpc-cmdline/trpclatest 有报错的话尝试配置一些代理&#xff08;选一个&#xff09; go env -w GOPROXYhttps://goproxy.cn,direct go env -w GOPROXYhttps://goproxy.io,direct go env -w GOPROXYhttps://goproxy.baidu.com/…...

nodejs+vue+ElementUi废品废弃资源回收系统

系统主要是以后台管理员管理为主。管理员需要先登录系统然后才可以使用本系统&#xff0c;管理员可以对系统用户管理、用户信息管理、回收站点管理、站点分类管理、站点分类管理、留言板管理、系统管理进行添加、查询、修改、删除&#xff0c;以保障废弃资源回收系统系统的正常…...

【Java程序设计】【C00277】基于Springboot的招生管理系统(有论文)

基于Springboot的招生管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的招生管理系统 本系统分为系统功能模块、管理员功能模块以及学生功能模块。 系统功能模块&#xff1a;在系统首页可以查看首页、专业…...

汇编语言与接口技术实践——秒表

1. 设计要求 基于 51 开发板,利用键盘作为按键输入,将数码管作为显示输出,实现电子秒表。 功能要求: (1)计时精度达到百分之一秒; (2)能按键记录下5次时间并通过按键回看 (3)设置时间,实现倒计时,时间到,数码管闪烁 10 次,并激发蜂鸣器,可通过按键解除。 2. 设计思…...

【数据结构与算法】(19)高级数据结构与算法设计之 图 拓扑排序 最短路径 最小生成树 不相交集合(并查集合)代码示例

目录 6) 拓扑排序KahnDFS 7) 最短路径DijkstraBellman-FordFloyd-Warshall 8) 最小生成树PrimKruskal 9) 不相交集合&#xff08;并查集合&#xff09;基础路径压缩Union By Size 图-相关题目 6) 拓扑排序 #mermaid-svg-MQhLsXiMwnlUL3q4 {font-family:"trebuchet ms"…...

OSCP靶场--Nickel

OSCP靶场–Nickel 考点(1.POST方法请求信息 2.ftp&#xff0c;ssh密码复用 3.pdf文件密码爆破) 1.nmap扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.237.99 -sV -sC -p- --min-rate 5000 Starting Nmap 7.92 ( https://nmap.org ) at 2024-02-22 04:06 EST Nm…...

新建工程——库函数版

新建工程——库函数版 s t e p I : 新建工程文件夹 \bf{stepI:新建工程文件夹} stepI:新建工程文件夹 s t e p I I : K e i l 5 新建工程 \bf{stepII:Keil5新建工程} stepII:Keil5新建工程 s t e p I I I : 最终得到工程文件 \bf{stepIII:最终得到工程文件} stepIII:最终得到工…...

java 数据结构栈和队列

目录 栈(Stack) 栈的使用 栈的模拟实现 栈的应用场景 队列(Queue) 队列的使用 队列模拟实现 循环队列 双端队列 用队列实现栈 用栈实现队列 栈(Stack) 什么是栈&#xff1f; 栈 &#xff1a;一种特殊的线性表&#xff0c;其 只允许在固定的一端进行插入和删除元素操…...

#LLM入门|Prompt#1.8_聊天机器人_Chatbot

聊天机器人设计 以会话形式进行交互&#xff0c;接受一系列消息作为输入&#xff0c;并返回模型生成的消息作为输出。原本设计用于简便多轮对话&#xff0c;但同样适用于单轮任务。 设计思路 个性化特性&#xff1a;通过定制模型的训练数据和参数&#xff0c;使机器人拥有特…...

LeetCode 2476.二叉搜索树最近节点查询:中序遍历 + 二分查找

【LetMeFly】2476.二叉搜索树最近节点查询&#xff1a;中序遍历 二分查找 力扣题目链接&#xff1a;https://leetcode.cn/problems/closest-nodes-queries-in-a-binary-search-tree/ 给你一个 二叉搜索树 的根节点 root &#xff0c;和一个由正整数组成、长度为 n 的数组 qu…...

选座位 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 疫情期间&#xff0c;需要大家保证一定的社交距离&#xff0c;公司组织开交流会议&#xff0c;座位有一排共N个座位&#xff0c;编号分别为[0…N-1]&#xff0c;要…...

【微服务】mybatis typehandler使用详解

目录 一、前言 二、TypeHandler简介 2.1 什么是TypeHandler 2.1.1 TypeHandler特点 2.2 TypeHandler原理 2.3 mybatis自带的TypeHandler 三、环境准备 3.1 准备一张数据表 3.2 搭建一个springboot工程 3.2.1 基础依赖如下 3.2.2 核心配置文件 3.2.3 测试接口 四、T…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...