当前位置: 首页 > news >正文

牛客周赛 Round 34 解题报告 | 珂学家 | 构造思维 + 置换环


前言


整体评价

好绝望的牛客周赛,彻底暴露了CF菜菜的本质,F题没思路,G题用置换环骗了50%, 这大概是唯一的亮点了。


A. 小红的字符串生成

思路: 枚举

a,b两字符在相等情况下比较特殊

a, b = input().split()
if a == b:print (2)print (a)print (a + a)
else:print (4)print (a)print (b)print (a + b)print (b + a)

B. 小红的非排列构造

思路: 脑筋急转弯

如果合法,就是0

如果不合法,就把第1项改为n+1(排列外的数)

n = int(input())
arr = list(map(int, input().split()))si = set()
for v in arr:if 1 <= v <= n:si.add(v)
if len(si) != n:print (0)
else:print (1)print (1, n + 1)

C. 小红的数字拆解

思路: 贪心

从高位到低位贪心即可

s = input()arr = []i = 0
while i < len(s):j = iwhile j < len(s):p = ord(s[j]) - ord('0')if p % 2 == 0:breakj += 1arr.append(s[i:j+1])i = j + 1arr.sort(key=lambda x: (len(x), x))print (*arr, sep='\n')

D. 小红的陡峭值

思路: 构造

这题是限制性很强的题, 绝对差值总和为1

对于不满足条件数组,可以立马返回 -1.

难点在于

如何构造合法数组 如何构造合法数组 如何构造合法数组

假定0元素(左右两侧都存在非0值),和左侧元素保持一致(反证法使得该假设一定成立)

那就剩下一侧有非0值的0值,如何讨论呢?

  • 如果绝对差值总和为1
    • 那就和左侧/右侧的那个非0值,保持一致
  • 如果绝对差值总和为0
    • 那就选一边构造一个比左侧/右侧刚好大1的数
n = int(input())
arr = list(map(int, input().split()))if arr == [0 for _ in range(n)]:if len(arr) == 1:print (-1)else:print (*([1] + [2] * (n - 1)), sep=' ')
else:# 计算当前的差值综合brr = [v for v in arr if v > 0]diff = 0for i in range(len(brr) - 1):diff += abs(brr[i] - brr[i+1])if diff > 1:print (-1)else:first, last = -1, -1for i in range(n):if arr[i] != 0:if first == -1:first = ilast = i # 填充中间的值pre = arr[first]for i in range(first + 1, last):if arr[i] == 0:arr[i] = preelse:pre = arr[i]# 填充两端的值if diff == 1:# 需要两端保持绝对值差值为0for i in range(first):arr[i] = arr[first]for i in range(last + 1, n):arr[i] = arr[last]print (*arr, sep=' ')else:# 需要两端构建出一个绝对值差值1if first > 0:for i in range(first):arr[i] = arr[first] + 1for i in range(last + 1, n):arr[i] = arr[last]print (*arr, sep=' ')elif last + 1 < n:for i in range(last + 1, n):arr[i] = arr[last] + 1print (*arr, sep=' ')else:print (-1)

E. 小红的树形 dp

思路: BFS + 验证

属于诈骗题,因为题目一直再诱导你往树形DP上去靠

其实从bfs出发,进行交叉染色

然后对边上两点进行验证,如果存在同色,即不合法

n = int(input())
s = input()
ss = list(s)g = [[] for _ in range(n)]for _ in range(n - 1):u, v = list(map(int, input().split()))u -= 1v -= 1g[u].append(v)g[v].append(u)from collections import dequedeq = deque()
for i in range(n):if ss[i] != '?':deq.append((i, ss[i]))# 需要补充这种特殊情况
if len(deq) == 0:ss[0] = 'd'deq.append((0, ss[0]))# BFS流程
while len(deq) > 0:idx, ch = deq.popleft()for v in g[idx]:if ss[v] == '?':ss[v] = 'd' if ch == 'p' else 'p'deq.append((v, ss[v]))# 验证逻辑
ok = True
for i in range(n):ch = ss[i]if ch == '?':ok = Falsebreakfor v in g[i]:if ch == 'd' and ss[v] != 'p':ok = Falsebreakif ch == 'p' and ss[v] != 'd':ok = Falsebreakif not ok:print (-1)
else:print (''.join(ss))

F. 小红的矩阵构造

思路: 异或特性

贴一下皮神的代码

代码即是说服力

n, m, x = map(int, input().split())res = [[0] * m for _ in range(n)]if x % 4 == 0:res[0][0] = res[0][1] = res[1][0] = res[1][1] = x // 4for ls in res:print(*ls)
elif x == 2:print(-1)
else:res[2][0] = res[2][1] = 1res[1][0] = res[1][2] = 1res[0][1] = res[0][2] = 1for i in [0, -1]:for j in [0, -1]:res[i][j] += (x - 6) // 4for ls in res:print(*ls)

G. 小红的元素交换

思路: 置换环 + 找规律

假如这题没有交换颜色的限制,那这题就是裸的置换环

但是实际上,这题的核心框架依旧是

置换环 置换环 置换环

具体情况需要分类讨论

  • 同一置换环(a个元素)中存在两种颜色, 则交换一定为a-1

  • 同一置换环(a个元素)中只存在1种颜色, 则需要借助外部的非同色,这样为a-1+2=a+1

但是这样做,只能对大致50%+

为啥呢?

因为对于纯色R的置换环,和纯色W的置换环,其实可以互相借调,因此这一组合,可以减少2次不必要的交换。

因此在原先的基础上,需要优化减掉

m i n ( 纯色 R 的群数,纯色 W 的群数 ) ∗ 2 min(纯色R的群数,纯色W的群数) * 2 min(纯色R的群数,纯色W的群数)2

n = int(input())
arr = list(map(int, input().split()))
s = input()from collections import Counterif [i + 1 for i in range(n)] != arr and len(Counter(s)) == 1:print(-1)
else:res = 0white, red = 0, 0for i in range(n):if arr[i] == i + 1:continueelse:# 置换环核心逻辑state = 0tmp = 0while arr[i] != i + 1:p1, p2 = i, arr[i] - 1arr[p1], arr[p2] = arr[p2], arr[p1]tmp += 1state |= 2 if s[p1] == 'R' else 1state |= 2 if s[p2] == 'R' else 1# 分类讨论置换环的纯色情况if state == 3:res += tmpelse:# 纯色,需要借调外部力量res += tmp + 2if state == 1:white += 1else:red += 1print(res - min(white, red) * 2)

写在最后

alt

相关文章:

牛客周赛 Round 34 解题报告 | 珂学家 | 构造思维 + 置换环

前言 整体评价 好绝望的牛客周赛&#xff0c;彻底暴露了CF菜菜的本质&#xff0c;F题没思路&#xff0c;G题用置换环骗了50%, 这大概是唯一的亮点了。 A. 小红的字符串生成 思路: 枚举 a,b两字符在相等情况下比较特殊 a, b input().split() if a b:print (2)print (a)pri…...

LeetCode13 罗马数字转整数

题目 罗马数字包含以下七种字符: I&#xff0c; V&#xff0c; X&#xff0c; L&#xff0c;C&#xff0c;D 和 M。字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如&…...

【Hudi】Upsert原理

17张图带你彻底理解Hudi Upsert原理 1.开始提交&#xff1a;判断上次任务是否失败&#xff0c;如果失败会触发回滚操作。然后会根据当前时间生成一个事务开始的请求标识元数据。2.构造HoodieRecord Rdd对象&#xff1a;Hudi 会根据元数据信息构造HoodieRecord Rdd 对象&#xf…...

信息系统服务:演绎数字时代的征程

信息系统服务作为数字化时代的基石&#xff0c;已经在人类社会的各个领域发挥着重要作用。本文将从信息系统服务的起源、发展和演化过程&#xff0c;通过生动的例子和准确客观的历史事实&#xff0c;探讨信息系统服务对人类社会的影响与变革。 1. 起源&#xff1a;信息处理的初…...

rust连接postgresql数据库

引入crate&#xff1a; postgres "0.19.7" use postgres::{Client, NoTls, error::Error};fn main() -> Result<(), Error> {let mut client Client::connect("hostlocalhost port5432 dbnamexxxxdb userpostgres passwordxxxxxx", NoTls).un…...

[面试] 什么是死锁? 如何解决死锁?

什么是死锁 死锁&#xff0c;简单来说就是两个或者多个的线程在执行的过程中&#xff0c;争夺同一个共享资源造成的相互等待的现象。如果没有外部干预线程会一直阻塞下去. 导致死锁的原因 互斥条件&#xff0c;共享资源 X 和 Y 只能被一个线程占用; 请求和保持条件&#xf…...

网络原理 HTTP _ HTTPS

回顾 我们前面介绍了HTTP协议的请求和响应的基本结构 请求报文是由首行请求头空行正文来组成的 响应报文是由首行形影头空行响应正文组成的 我们也介绍了一定的请求头之中的键值对的属性 Host,Content-type,Content-length,User-agent,Referer,Cookie HTTP协议中的状态码 我们先…...

软件实际应用实例,茶楼收银软件管理系统操作流程,茶室计时计费会员管理系统软件试用版教程

软件实际应用实例&#xff0c;茶楼收银软件管理系统操作流程&#xff0c;茶室计时计费会员管理系统软件试用版教程 一、前言 以下软件以 佳易王茶社计时计费管理系统软件V17.9为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 1、计时计费&…...

网络安全“三保一评”深度解析

“没有网络安全就没有国家安全”。近几年&#xff0c;我国法律法规陆续发布实施&#xff0c;为承载我国国计民生的重要网络信息系统的安全提供了法律保障&#xff0c;正在实施的“3保1评”为我国重要网络信息系统的安全构筑了四道防线。 什么是“3保1评”&#xff1f; 等保、分…...

IDA使用-2023CICSN华中赛区pwn题逆向为例

文章目录 相关字节标识导入函数和导出函数找程序入口函数选项设置重命名CISCN2023华中赛区分区赛AWDIDA源码main 构造结构体sub_141B() 打开局部变量类型的视图增加变量类型重新定义变量类型再次设置变量类型并重新定义再次设置变量类型并重新定义再次设置变量类型并重新定义 设…...

安装虚拟机出现的一些问题

1、在重新打开软件之后出现闪退 解决&#xff1a;[WSL] 解决nsenter: cannot open /proc/320/ns/time: No such file or directory 问题 小白向-CSDN博客2、重新启动xrdp服务命令 解决&#xff1a; sudo systemctl restart xrdp3、将端口从3389改为3390&#xff0c;因为此前…...

Git+py+ipynb Usage

0.default config ssh-keygen -t rsa #之后一路回车,当前目录.ssh/下产生公私钥 cat ~/.ssh/id_rsa.pub #复制公钥到账号 git config --global user.email account_email git config --global user.name account_namebug of ipynb TqdmWarning: IProgress not found. Please …...

eBPF实践篇之环境搭建

文章目录 前言实验环境前置知识配置开发环境最后 前言 你好&#xff0c;我是醉墨居士&#xff0c;本次我们学习一下eBPF&#xff0c;我们基于libbpf-bootstrap来进行我们的eBPF程序开发&#x1f917; 实验环境 一台Debian12操作系统的计算机&#xff0c;我使用的是Debian12.…...

机器学习科普及学习路线

机器学习是一种让计算机系统通过从数据中学习来改进性能的方法。它的学习方法主要包括监督学习、无监督学习和强化学习。下面我将详细解释机器学习的概念、学习方法和学习路线。 1. 机器学习概念&#xff1a; 机器学习是一种人工智能的分支&#xff0c;旨在使计算机系统能够从…...

如何在本地电脑部署HadSky论坛并发布至公网可远程访问【内网穿透】

文章目录 前言1. 网站搭建1.1 网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3 Cpolar稳定隧道&#xff08;本地设置&#xff09;2.4 公网访问测试 总结 前言 经过多年的基础…...

Spring Boot 笔记 025 主界面

1.1 路由搭建 1.1.1 安装vue router npm install vue-router4 1.1.2 在src/router/index.js中创建路由器&#xff0c;并导出 import { createRouter, createWebHistory } from vue-router//导入组件 import LoginVue from /views/Login.vue import LayoutVue from /views/La…...

(done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

参考视频&#xff1a;https://www.bilibili.com/video/BV1Vg41197ew/?vd_source7a1a0bc74158c6993c7355c5490fc600 参考资料(半正定矩阵的定义)&#xff1a;https://baike.baidu.com/item/%E5%8D%8A%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5/2152711?frge_ala 看看半正定矩阵的…...

七、矩阵的初等变换

目录 -1. 介绍 0、增广矩阵&#xff1a; 1、初等变换的性质&#xff1a; ​编辑2、矩阵初等变换的分类&#xff1a; 2.1 普通的行阶梯矩阵&#xff1a; 2.2 、行最简形矩阵&#xff1a; 2.3、标准形矩阵&#xff1a; 3、初等变换的定理&#xff1a; 4、初等变换的应用&…...

CSS background-size

background-size 菜鸟教程 CSS3 background-size 属性 MDN Web 开发技术>CSS&#xff1a;层叠样式表>background-size CSS的background 背景图片自动适应元素大小,实现img的默认效果 background-size:100% 100%&#xff1b; 在CSS中&#xff0c;background-size属性用…...

【机器学习】特征工程之特征选择

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

如何应对敏捷转型中的团队阻力

应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中&#xff0c;明确沟通敏捷转型目的尤为关键&#xff0c;团队成员只有清晰理解转型背后的原因和利益&#xff0c;才能降低对变化的…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...