当前位置: 首页 > news >正文

【数据结构与算法】动态规划法解题20240227

在这里插入图片描述


动态规划法

  • 一、什么是动态规划
  • 二、动态规划的解题步骤
  • 三、509. 斐波那契数
    • 1、动规五部曲:
  • 四、70. 爬楼梯
    • 1、动规五部曲:
  • 五、746. 使用最小花费爬楼梯
    • 1、动规五部曲:

一、什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的

二、动态规划的解题步骤

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
确定dp数组(dp table)以及下标的含义
确定递推公式
dp数组如何初始化
确定遍历顺序
举例推导dp数组

三、509. 斐波那契数

在这里插入图片描述

1、动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果
1、确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]

2、确定递推公式
为什么这是一道非常简单的入门题目呢?
因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

3、dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;

4、确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

class S509:def func(self, n):# 1、创建dp数组,dp[i]:表示第i个数是第i个斐波那契数列dp = [0] * (n+1)# 3、初始化数组状态dp[0] = 0dp[1] = 1# 4、确定遍历顺序for i in range(2, n+1):# 2、确定递推公式dp[i] = dp[i - 1] + dp[i - 2]print(dp)return dp[n]r = S509()
n = 4
print(r.func(n))

四、70. 爬楼梯

简单
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

在这里插入图片描述

1、动规五部曲:

1、确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法

2、确定递推公式
如何可以推出dp[i]呢?
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。
在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。
这体现出确定dp数组以及下标的含义的重要性!
3、dp数组如何初始化
不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
4、确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

class S70:def func(self, n):if n <= 1:return n# 1、创建dp数组,dp[i]:走到i台阶,一共用dp[i]种方法dp = [0] * (n + 1)# 3、数组初始化dp[1] = 1dp[2] = 2# 4、确定遍历顺序for i in range(3, n + 1):# 2、确定递推公式dp[i] = dp[i - 1] + dp[i - 2]print(dp)return dp[n]r = S70()
n = 4
print(r.func(n))

五、746. 使用最小花费爬楼梯

简单
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
在这里插入图片描述

1、动规五部曲:

1、确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

2、确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

3、dp数组如何初始化
看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。
新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。
所以初始化 dp[0] = 0,dp[1] = 0;

4、确定遍历顺序
最后一步,递归公式有了,初始化有了,如何遍历呢?
因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

class S746:def func(self, cost):# 1、创建dp数组,dp[i]:走到楼梯i,需要最小的花费为dp[i]dp = [0] * (len(cost) + 1)# 3、初始化数组dp[0] = 0  # 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。dp[1] = 0  # 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。# 4、确定遍历顺序for i in range(2, len(cost) + 1):# 2、递推公式# 在第i步,可以选择从前一步(i-1)花费体力到达当前步,或者从前两步(i-2)花费体力到达当前步# 选择其中花费体力较小的路径,加上当前步的花费,更新dp数组dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])return dp[len(cost)]r = S746()
cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
print(r.func(cost))

在这里插入图片描述

相关文章:

【数据结构与算法】动态规划法解题20240227

动态规划法 一、什么是动态规划二、动态规划的解题步骤三、509. 斐波那契数1、动规五部曲&#xff1a; 四、70. 爬楼梯1、动规五部曲&#xff1a; 五、746. 使用最小花费爬楼梯1、动规五部曲&#xff1a; 一、什么是动态规划 动态规划&#xff0c;英文&#xff1a;Dynamic Pro…...

备战蓝桥杯—— 双指针技巧巧答链表2

对于单链表相关的问题&#xff0c;双指针技巧是一种非常广泛且有效的解决方法。以下是一些常见问题以及使用双指针技巧解决&#xff1a; 合并两个有序链表&#xff1a; 使用两个指针分别指向两个链表的头部&#xff0c;逐一比较节点的值&#xff0c;将较小的节点链接到结果链表…...

半监督节点分类-graph learning

半监督节点分类相当于在一个图当中&#xff0c;用一部分节点的类别上已知的&#xff0c;有另外一部分节点的类别是未知的&#xff0c;目标是使用有标签的节点来推断没有标签的节点 注意 半监督节点分类属于直推式学习&#xff0c;直推式学习相当于出现新节点后&#xff0c;需要…...

软件文档-运维-开发-管理-资质-评审-招投标-验收

开发文档&#xff1a;这类文档主要用于记录软件的开发过程和细节&#xff0c;包括&#xff1a; 《功能要求》&#xff1a;描述了软件应具备的功能&#xff0c;是软件开发的基础。《投标方案》&#xff1a;向潜在的客户或招标方展示公司的技术和项目实施能力。《需求分析》&…...

猫头虎分享已解决Bug || Vue中的TypeError: Cannot read property ‘name‘ of undefined 错误

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

技术应用:使用Spring Boot、MyBatis Plus和Dynamic DataSource实现多数据源

引言 在现代的软件开发中&#xff0c;许多应用程序需要同时访问多个数据库。例如&#xff0c;一个电子商务平台可能需要访问多个数据库来存储用户信息、产品信息和订单信息等。在这种情况下&#xff0c;使用多数据源是一种常见的解决方案&#xff0c;它允许我们在一个应用程序…...

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址&#xff1a;https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…...

编程笔记 Golang基础 016 数据类型:数字类型

编程笔记 Golang基础 016 数据类型&#xff1a;数字类型 1. 整数类型&#xff08;Integer Types&#xff09;a) 固定长度整数&#xff1a;b) 变长整数&#xff1a; 2. 浮点数类型&#xff08;Floating-Point Types&#xff09;3. 复数类型&#xff08;Complex Number Types&…...

一周学会Django5 Python Web开发-会话管理(CookiesSession)

锋哥原创的Python Web开发 Django5视频教程&#xff1a; 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计26条视频&#xff0c;包括&#xff1a;2024版 Django5 Python we…...

QT之QString.arg输出固定位数

问题描述 我需要用QString输出一个固定位数的数字字符串。起初我的代码是这样&#xff1a; int img_num 1 auto new_name QString("%1.png").arg((int)img_num, 3, 10, 0); //最后一个参数用u0也是一样的 qDebug() << "new_name:" << new…...

Linux下各种压缩包的压缩与解压

tar 归档&#xff0c;不压缩&#xff0c;常见后缀 .tar # 将文件夹归档成为一个包 tar cf rootfs.tar rootfs # 将归档包还原为文件夹 tar xf rootfs.tar # 将归档包还原到路径 a/b/c tar xf rootfs.tar -C a/b/cgzip压缩&#xff0c; 常见后缀 .tar.gz .tgz # 压缩 tar czf …...

【ctfshow—web】——信息搜集篇1(web1~20详解)

ctfshow—web题解 web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20 web1 题目提示 开发注释未及时删除 那就找开发注释咯&#xff0c;可以用F12来查看&#xff0c;也可以CtrlU直接查看源代码呢 就拿到flag了 web2 题目提示 j…...

GEE入门篇|遥感专业术语(实践操作4):光谱分辨率(Spectral Resolution)

目录 光谱分辨率&#xff08;Spectral Resolution&#xff09; 1.MODIS 2.EO-1 光谱分辨率&#xff08;Spectral Resolution&#xff09; 光谱分辨率是指传感器进行测量的光谱带的数量和宽度。 您可以将光谱带的宽度视为每个波段的波长间隔&#xff0c;在多个波段测量辐射亮…...

c++中模板的注意事项

1. 模板定义时&#xff0c;<>中的虚拟类型参数不能为空。(因为我们使用模板就是希望使用模拟类型代替其它的类型&#xff0c;如果我们不定义就没有意义了) 2. 无论是定义函数模板还是类模板&#xff0c;其实template定义与后面使用虚拟类型的类或者函数&#xff0c;是…...

【代码随想录python笔记整理】第十三课 · 链表的基础操作 1

前言:本笔记仅仅只是对内容的整理和自行消化,并不是完整内容,如有侵权,联系立删。 一、链表 在之前的学习中,我们接触到了字符串和数组(列表)这两种结构,它们具有着以下的共同点:1、元素按照一定的顺序来排列。2、可以通过索引来访问数组中的元素和字符串中的字符。由此,…...

JAVA工程师面试专题-《Mysql》篇

目录 一、基础 1、mysql可以使用多少列创建索引&#xff1f; 2、mysql常用的存储引擎有哪些 3、MySQL 存储引擎&#xff0c;两者区别 4、mysql默认的隔离级别 5、数据库三范式 6、drop、delete 与 truncate 区别&#xff1f; 7、IN与EXISTS的区别 二、索引 1、索引及索…...

@ 代码随想录算法训练营第4周(C语言)|Day22(二叉树)

代码随想录算法训练营第4周&#xff08;C语言&#xff09;|Day22&#xff08;二叉树&#xff09; Day22、二叉树&#xff08;包含题目 ● 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点 &#xff09; 235. 二叉搜索树的最近公…...

福特锐界2021plus 汽车保养手册

福特锐界2021plus汽车保养手册两页&#xff0c;零部件保养要求&#xff0c;电子版放这里方便查询&#xff1a;...

c++进阶路线

学完C后的进阶路线-初学者勿入【程序员Rock】_哔哩哔哩_bilibili 1.系统训练代码阅读能力 代码阅读工具&#xff1a; 1&#xff09;.Source Insight(阅读大型源码) 2&#xff09;.understand(整体代码模块关系构建) 3&#xff09;.SOURCETRAIL 代码阅读能力--千行级 嵌入…...

python中的类与对象(2)

目录 一. 类的基本语法 二. 类属性的应用场景 三. 类与类之间的依赖关系 &#xff08;1&#xff09;依赖关系 &#xff08;2&#xff09;关联关系 &#xff08;3&#xff09;组合关系 四. 类的继承 一. 类的基本语法 先看一段最简单的代码&#xff1a; class Dog():d_…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...