chatgpt:还有哪些人工智能和科技值得关注?
今天,很多人的目光都被ChatGPT吸引,其实,人工智能的范围很大,远不止ChatGPT或者其他自然语言的处理工具。所以说不管ChatGPT的结果如何,人工智能依然是未来。
那么在ChatGPT之外,还有没有什么值得关注的人工智能技术和应用呢?有的。这一讲,我们就说说这个问题。
一、第一个就是多任务人工智能
也就是除了我们现在熟知的ChatGPT之外,还有另一项人工智能技术——多任务的人工智能。
这两项技术是两种不同的技术路线:GPT是所谓以数量实现质量的代表,用英语的说法就是“brute force”,翻译成中文就是“简单粗暴”,大数据,大计算量;而多任务的人工智能则是以质量取代数量。在这里人其实就是多任务的智能生物。
今天,几乎所有人工智能的成果都来自于以数量实现质量。数据、计算能力和数学模型,是当今人工智能的基础,ChatGPT便是如此。
但是,今天的人工智能也有两个大问题:
第一个问题,每个系统只能完成一件特定的事情,你无法让ChatGPT下棋,也无法让AlphaGo回答问题。因此,虽然这些人工智能系统能把一件事做好,但换一件事就不行了。
第二个问题,由于今天的人工智能是采用以量取胜的方法实现的,当数量达不到时,质量就无从谈起。你要是只让智能摄像头看某个人的一张照片,它通常是无法识别这个人的。但是,人通常只看一眼,就会有印象。
这些问题,在多任务的人工智能系统中是不存在的。那么,怎样才能实现一个多任务的人工智能系统呢?它需要有四个条件:
1.知其然还要知其所以然;
2.具有对身边事物的好奇;
3.具有常识;
4.处理信息的能耗降低几个数量级。
1. 首先说第一个,什么叫“知其然还要知其所以然”。
就比如ChatGPT能够给出一个问题的答案,AlphaGo能够给出已知的最好行棋步骤,但是它们并不清楚为什么给出这些答案。这就是知其然而不知其所以然。这样一来,机器在下棋时获得的经验就不能帮助它理解语言,或者积攒其他经验。而人却不同,人在下棋时会悟出很多做事的道理。因此,人的智能是多任务的,而机器不是。
想要做到知其所以然,需要真正的理解知识。还是以自然语言处理为例,不能只是通过大量学习看到了所有的语言学现象,还需要真正对语言有所理解。
如果有这么一句话:“奖杯放不进包里,因为它太大了。”它的意思很好理解。
但是,如果我们说:“奖杯放不进包里,因为它太小了。”
其实也说得通。因为根据上下文的语义信息,它在这里指的是包,包太小了。但计算机这时就会糊涂。
2. 其次是第二个条件,具有对身边事物的好奇心,这其实是指主动学习。
一个人走到大街上会东张西望,他的好奇心会让他看到很多东西,甚至增长知识。但是今天的人工智能,对于任务以外的事情,它是毫无好奇心的。
举例来讲:当你做一件事非常顺利或者非常耗时的时候,你会去琢磨为什么。做得太顺利或者太不顺利,都可能是做错了,你会主动回去检查。这就是好奇心。但是ChatGPT不会,它算了半天没算出来,是不会考虑自己在知识上有欠缺,或者算法上有Bug的。没有好奇心,就无法积攒普遍意义上的经验。
3. 多任务的人工智能系统的第三个实现条件是,它要有常识。
今天,你让人工智能系统画一张“在阳光明媚的春天里,在草地上奔跑的狗的照片”,它能画,但是画得没有意境,非常直接,这是因为它不理解“在阳光明媚的春天里”是什么意思。
当然,更要命的是,如果你让它画一张“在阳光明媚的春天里,在草地上奔跑的海豚的照片”,它很可能会把狗换成海豚交给你,因为它不具有海豚无法上岸的常识。没有常识,就很难完成复杂任务,比如让机器人去给你买菜。
4. 最后是第四个条件,想要实现多任务的人工智能系统,处理信息的能耗必须降低几个数量级。
很多人都有一个问题,既然今天人工智能在很多领域做得比人好,我们把它们集成起来,是否能得到一个多任务的人工智能系统呢?
其实,多任务指的不是几个系统的简单拼接,而是让执行各个任务的算法在内部打通,这件事目前还没有做到。即便是把多个人工智能系统拼接起来,这个系统的运行成本也会极高,因为它每做一件事都极为耗费资源。这个资源既包括计算资源,也包括数据,还包括其他资源,比如传感器等。
作为一种多任务的智能动物,人的学习和思考在能量利用上是非常高效的。人脑有百万亿个神经元连接,而人的寿命一般不超过90年,也就是30亿秒,在30亿秒时间里,对百万亿个神经元连接完成训练,这是非常高效的。
虽然计算机的速度比人快,但是训练一个只有几万个连接的深度人工神经网络就需要几万秒,效率低了很多。如果再把神经网络的规模增加十倍,训练的时间需要增加成百上千倍。
训练人脑这样一个系统,能耗是难以想象的。今天,要想把各种人工智能系统整合成一个,计算的能耗必须几个数量级,甚至几十个数量级地下降。这也是很多人认为,今天的深度学习不可能产生多任务人工智能的原因之一。
二、生物和医学应用
好,说完了人工智能行业一条值得关注的技术路线,我们再看一个值得关注的应用领域,也就是深度学习在生物和医学上的应用。
迄今为止,这方面最有意义的一项成果是DeepMind公司(Google的子公司)做的AlphaFold(深度学习的人工智能),也就是用深度学习解构蛋白质的结构,研究蛋白质的折叠问题。
我们知道,人的生命是靠新陈代谢完成的,而新陈代谢是由基因控制蛋白质的合成实现的。如果蛋白质的合成出了问题,人就会生病。而几乎所有和衰老有关的疾病,都和蛋白质的合成有关。因此,研究清楚这个问题,是解决衰老的关键。
但是,蛋白质是一种非常复杂的有机分子,由很多氨基酸组成的链构成,而且这个结构还是三维的。今天,人类发现了很多种蛋白质,但是无法搞清楚它们的结构。解决这个问题是极具挑战性的。
每年,全世界都有科学家试图通过X射线晶体学、电子显微镜和核磁共振等成像技术分析蛋白质的结构。这些技术既昂贵又费时。
在过去的60多年里,人类大约只解构了千分之一的蛋白质。换句话说,现在已知的和生命有关的蛋白质超过2亿种,而人类只解构了17万种。前面说过,如果能预测蛋白质的结构,将极大地促进生命科学的研究。显然,光靠人力做这件事,我们是等不及的。
从很多年前开始,计算机科学家就同生物学家们合作,用计算机来解决蛋白质结构预测的问题,但只在很小的、简单的蛋白质上获得了成功。
2020年,DeepMind的AlphaFold就做到了“违反化学规则的数量接近于0”的好成绩。这是什么意思呢?
氨基酸在合成蛋白质的时候,需要符合化学规则,不符合化学规则的蛋白质结构是不存在的。而深度学习预测的蛋白质结构可能会有错误,导致一些结构违反了化学规则。因此,通常人们会使用有多少预测违反了化学规则来判断解构蛋白质的准确性。目前,和人已经解构的结果对比,AlphaFold解构蛋白质的准确率高达70%。
这项成果的意义非常大,它可以改变生物学和制药学的发展,一旦成功,对人类的福祉有很大的帮助。
因此,在很多从事人工智能研究的学者们看来,这种事情比做一些人工智能的玩具有意义得多。
最后,借这个机会,我来谈谈我们是否需要防范人工智能。
前一阵,盖茨和马斯克都建议,警惕甚至限制开发ChatGPT这样的技术。我觉得,这种担心为时尚早。
打一个比方,这就好比我们要造一架飞机,今天我们连空气动力学的原理都还没有完全搞清楚,只能做一个滑翔机,但是却开始担心它掉下来撞死人。事实上,我们今天要担心的,是那些人工智能背后的公司和控制它们的人。
总结:在ChatGPT之外,还有一些值得关注的人工智能技术和应用:
1、多任务人工智能:GPT-3是所谓以数量实现质量的代表,而多任务的人工智能则是以质量取代数量。
2、生物和医学应用:深度学习在生物和医学上的应用是人工智能行业一个值得关注的应用领域。
相关文章:
chatgpt:还有哪些人工智能和科技值得关注?
今天,很多人的目光都被ChatGPT吸引,其实,人工智能的范围很大,远不止ChatGPT或者其他自然语言的处理工具。所以说不管ChatGPT的结果如何,人工智能依然是未来。 那么在ChatGPT之外,还有没有什么值得关注的人…...
LeetCode 2997.使数组异或和等于K的最少操作次数
给你一个下标从 0 开始的整数数组 nums 和一个正整数 k 。 你可以对数组执行以下操作 任意次 : 选择数组里的 任意 一个元素,并将它的 二进制 表示 翻转 一个数位,翻转数位表示将 0 变成 1 或者将 1 变成 0 。 你的目标是让数组里 所有 元素…...

计算机设计大赛 深度学习大数据物流平台 python
文章目录 0 前言1 课题背景2 物流大数据平台的架构与设计3 智能车货匹配推荐算法的实现**1\. 问题陈述****2\. 算法模型**3\. 模型构建总览 **4 司机标签体系的搭建及算法****1\. 冷启动**2\. LSTM多标签模型算法 5 货运价格预测6 总结7 部分核心代码8 最后 0 前言 ǵ…...

WPF 附加属性+控件模板,完成自定义控件。建议观看HandyControl源码
文章目录 相关连接前言需要实现的效果附加属性添加附加属性,以Test修改FontSize为例依赖属性使用触发器使用直接操控 结论 控件模板,在HandyControl的基础上面进行修改参考HandyControl的源码控件模板原型控件模板 控件模板触发器完整样式简单使用 结论 …...
编程笔记 Golang基础 040 defer、panic 和 recover
编程笔记 Golang基础 040 defer、panic 和 recover 一、defer二、panic三、recover小结 在Go语言中,defer、panic 和 recover 是一组用于错误处理和控制程序流程的关键字。它们之间的交互有助于实现异常处理机制,并确保资源的正确释放。 一、defer defe…...
通过redfish协议实现服务器固件升级、从虚拟光驱启动自检盘并等待完成,最后截图保存
通过redfish协议实现服务器固件升级、从虚拟光驱启动自检盘并等待完成,最后截图保存 版本信息代码新开发的PCIE设备在做服务器适配时,有时需要服务器厂家更新BMC或BIOS固件。同时,我们也希望对PCIE设备做一些检测,最后收集一些信息存档。如果需要处理的服务器很多,通过BMC的界面…...

ARM 版银河麒麟桌面系统下 Qt 开发环境搭建指南
目录 前言安装Linux ARM 版 QtCreator配置 Qt Creator配置构建套件 第一个麒麟 Qt 应用程序小结 前言 在上一篇文章信创ARM架构QT应用开发环境搭建中建议大家使用 Ubuntu X86 系统作为信创 ARM 架构 QT 应用的开发环境,里面使用了交叉编译的方式。这对于自己的 Qt …...
架构面试题汇总:缓存(二)
目录 1. 问题:什么是缓存,以及为什么我们需要缓存?2. 问题:你能解释一下缓存击穿、缓存雪崩和缓存预热是什么吗?3. 问题:如何在Java中实现缓存?4. 问题:你如何决定哪些数据应该被缓存…...
【docker入门】1-
文章目录 参考: Docker – 容器虚拟化平台。 参考: docker入门,这一篇就够了。【零基础入门Docker】Dockerfile中的USER指令以及dockerfile命令详解dockerfile copy命令...

微信小程序-全局配置
个人笔记,仅供参考。 1.entryPagePath 代码: "entryPagePath": "pages/index/index" 具体用法: 2.pages 小程序中新增/减少页面,都需要对 pages 数组进行修改。 代码: "pages": [&…...
【Android】性能优化之内存、网络、布局、卡顿、安装包、启动速度优化
欢迎来到 Android 开发老生常谈的性能优化篇,本文将性能优化划分为内存、网络、布局、卡顿、安装包、启动速度七块,从这七块优化出发,阐述优化的 Application 的方式。 目录 内存优化避免内存泄漏使用内存分析工具优化数据结构和算法数据缓存…...

第3.6章:StarRocks数据导入——DataX StarRocksWriter
一、Datax 1.1 DataX 3.0概述 DataX3.0是一个异构数据源离线同步工具,可以方便的对各种异构数据源进行高效的数据同步。 其github地址为: https://github.com/alibaba/DataX/blob/master/introduction.mdhttps://github.com/alibaba/DataX/blob/mast…...

【非递归版】归并排序算法(2)
目录 MergeSortNonR归并排序 非递归&归并排序VS快速排序 整体思想 图解分析 代码实现 时间复杂度 归并排序在硬盘上的应用(外排序) MergeSortNonR归并排序 前面的快速排序的非递归实现,我们借助栈实现。这里我们能否也借助栈去…...
[C++]C++实现本地TCP通讯的示例代码
这篇文章主要为大家详细介绍了C如何利用TCP技术,实现本地ROS1和ROS2的通讯,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下 概要服务端代码 头文件源代码客户端代码 概要 利用TCP技术,实现本地ROS1和ROS2的通讯。 服务端代码 头文件 #include &…...

Sora - 探索AI视频模型的无限可能
文章目录 每日一句正能量前言技术解析应用场景未来展望伦理与创意用户体验与互动后记 每日一句正能量 . 一个人,如果没有经受过投资失败的痛楚,又怎么会看到绝望之后的海阔天空。很多时候,经历了人生中最艰难的事,反而锻造了最坚强…...

【JavaScript 漫游】【022】事件模型
文章简介 本篇文章为【JavaScript 漫游】专栏的第 022 篇文章,对 JavaScript 中事件模型相关的知识点进行了总结。 监听函数 浏览器的事件模型,就是通过监听函数(listener)对事件做出反应。事件发生后,浏览器监听到…...

【加密算法】RSA非对称加密算法简介
目录 前言 工作原理 密钥生成 加密和解密 在Java中使用RSA 生成密钥对 加密和解密数据 加密数据 解密数据 注意事项和最佳实践 结论 前言 RSA(Rivest-Shamir-Adleman)是一种基于数论的非对称加密算法,广泛应用于数字签名、数据加密…...

深入理解 JavaScript 对象原型,解密原型链之谜(上)
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

产品经理学习-产品运营《什么是SOP》
目录 什么是SOP 如何执行SOP 执行SOP的重点 什么是SOP SOP就是项目流程操作的说明书 日常工作中的例行操作: 例行操作是指,在每一天,针对每一个用户,在每个项目之中,都必须完成的操作,这些必须完成的操…...
大数据Hadoop生态圈
存储: HDFS(namenode,datanode) 计算:MapReduce(mapreduce,基于磁盘) 便于用sql操作:Hive(核心 metastore,存储这些结构化的数据),同类的还有Impala,hbase等 基于yaml的资源调度 hive &…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...

高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...