当前位置: 首页 > news >正文

开源计算机视觉库OpenCV常用的API介绍

 阅读本文之前请参阅-----开源计算机视觉库OpenCV详细介绍

        OpenCV(开源计算机视觉库)是一个跨平台的计算机视觉和机器学习软件库,它提供了大量的API(应用程序编程接口),用于处理图像和视频分析、对象检测、面部识别等任务。OpenCV的API涵盖了从基本的图像处理功能到高级的机器学习算法,是计算机视觉研究和开发的重要工具。


        OpenCV常用的API
1. **核心功能模块(Core Module)**
   核心功能模块提供了OpenCV的基本构建块,包括矩阵操作、数组操作、基本数据结构等。
   - `cv::Mat`:是OpenCV中用于存储图像数据和其他多维数组的数据结构。
   - `cv::imshow`:用于在窗口中显示图像。
   - `cv::imread`和`cv::imwrite`:用于读取和写入图像文件。
2. **图像处理模块(Imgproc Module)**
   图像处理模块包含了一系列图像处理功能,如图像滤波、几何变换、色彩空间转换等。
   - `cv::Canny`:用于边缘检测。
   - `cv::blur`和`cv::GaussianBlur`:用于图像模糊。
   - `cv::resize`:用于改变图像大小。
   - `cv::warpAffine`和`cv::warpPerspective`:用于图像仿射和透视变换。
3. **视频分析模块(Video Module)**
   视频分析模块提供了处理视频和运动分析的工具。
   - `cv::VideoCapture`:用于从摄像头或视频文件中捕获视频帧。
   - `cv::VideoWriter`:用于将视频帧写入文件。
4. **对象检测模块(Objdetect Module)**
   对象检测模块包含了一些预训练的模型,用于检测图像中的特定对象,如面部、眼睛等。
   - `cv::CascadeClassifier`:用于Haar特征的级联分类器对象检测。
5. **机器学习模块(ML Module)**
   机器学习模块提供了一系列机器学习算法,包括分类、回归、聚类等。
   - `cv::SVM`:支持向量机。
   - `cv::KNearest`:K最近邻算法。
6. **深度学习模块(dnn Module)**
   深度学习模块集成了深度神经网络模型,用于图像识别、对象检测等任务。
   - `cv::dnn::Net`:用于加载和运行预训练的深度学习模型。
        不同API的处理对象和应用场景
- **核心功能模块**:处理基本的图像数据结构和通用操作,适用于任何需要图像数据处理的场景。
- **图像处理模块**:处理图像滤波、增强、几何变换等,适用于图像预处理、图像编辑、计算机视觉项目。
- **视频分析模块**:处理视频文件和实时视频流,适用于视频内容分析、运动检测、监控系统。
- **对象检测模块**:处理特定对象的检测,如面部、车辆等,适用于安全系统、人机交互、自动监控。
- **机器学习模块**:处理数据分类、回归、聚类等问题,适用于任何需要数据分析的场景。
- **深度学习模块**:处理复杂的视觉识别任务,如图像分类、对象检测、语义分割,适用于最新的计算机视觉研究和应用。


        注意事项
- **版本兼容性**:OpenCV的版本更新可能会带来API的变化,确保你的代码与所使用的OpenCV版本兼容。
- **性能优化**:对于性能敏感的应用,要注意优化算法和数据处理流程,例如使用OpenCV的GPU加速功能。
- **资源管理**:合理管理内存和计算资源,尤其是在处理大型图像或视频时,避免内存泄漏。
- **错误处理**:OpenCV函数可能会在错误时返回错误代码或空指针,编写代码时应该检查这些错误并做出相应的处理。
- **安全性**:在使用OpenCV处理敏感数据时,要注意数据的安全性和隐私保护。
        总结
        OpenCV是一个功能强大的计算机视觉库,它提供了丰富的API来处理各种计算机视觉任务。了解不同API的处理对象、应用场景和注意事项,可以帮助开发者更有效地使用OpenCV来构建视觉应用。随着计算机视觉技术的不断发展,OpenCV也在不断更新和扩展,为研究和开发提供了更多的可能性。

相关文章:

开源计算机视觉库OpenCV常用的API介绍

阅读本文之前请参阅-----开源计算机视觉库OpenCV详细介绍 OpenCV(开源计算机视觉库)是一个跨平台的计算机视觉和机器学习软件库,它提供了大量的API(应用程序编程接口),用于处理图像和视频分析、对象检测、面…...

pytorch -- torch.nn下的常用损失函数

1.基础 loss function损失函数:预测输出与实际输出 差距 越小越好 - 计算实际输出和目标之间的差距 - 为我们更新输出提供依据(反向传播) 1. L1 torch.nn.L1Loss(size_averageNone, reduceNone, reduction‘mean’) 2. 平方差(…...

daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具

daydayEXP: 支持自定义Poc文件的图形化漏洞利用工具 基于java fx写的一款支持加载自定义poc文件的、可扩展的的图形化渗透测试框架。支持批量漏洞扫描、漏洞利用、结果导出等功能。 使用 经过测试,项目可在jdk8环境下正常使用。jdk11因为缺少一些必要的组件,所以jdk11版本工…...

无法访问云服务器上部署的Docker容器(二)

说明:记录一次使用公网IP 接口地址无法访问阿里云服务接口的问题; 描述 最近,我使用Docker部署了jeecg-boot项目,部署过程都没有问题,也没有错误信息。部署完成后,通过下面的地址访问后端Swagger接口文档…...

在Pycharm中运行Django项目如何指定运行的端口

方法步骤: 打开 PyCharm,选择你的 Django 项目。在菜单栏中,选择 “Run” -> “Edit Configurations...”。在打开的 “Run/Debug Configurations” 对话框中,选择你的 Django server 配置(如果没有,你…...

Android将 ViewBinding封装到BaseActivity基类中(Java版)

在Android中使用Java语言将ViewBinding封装到基类中,操作步骤如下: 1、在项目的build.gradle文件中启用了ViewBinding,添加以下代码: android {...buildFeatures {viewBinding true} } 2、创建一个名为“BaseActivity”的基类&…...

JSP实现数据传递与保存(一)

一、Web开发步骤 1.1两类模式 后端——————前端 先有前端&#xff0c;前端用的时候直接调用 后端已实现注册接口&#xff0c;接口名为doRegister.jsp 前端此时&#xff1a; 前端的form表单中的action提交地址就只能填doRegister.jsp&#xff0c;即&#xff1a; <f…...

【论文笔记之 YIN】YIN, a fundamental frequency estimator for speech and music

本文对 Alain de Cheveigne 等人于 2002 年在 The Journal of the Acoustical Society of America 上发表的论文进行简单地翻译。如有表述不当之处欢迎批评指正。欢迎任何形式的转载&#xff0c;但请务必注明出处。 论文链接&#xff1a;http://audition.ens.fr/adc/pdf/2002_…...

水印相机小程序源码

水印相机前端源码&#xff0c;本程序无需后端&#xff0c;前端直接导入即可&#xff0c;没有添加流量主功能&#xff0c;大家开通后自行添加 源码搜索&#xff1a;源码软件库 注意小程序后台的隐私权限设置&#xff0c;前端需要授权才可使用 真实时间地址拍照记录&#xff0c…...

NXP实战笔记(八):S32K3xx基于RTD-SDK在S32DS上配置LCU实现ABZ解码

目录 1、概述 2、SDK配置 2.1、IO配置 2.2、TRGMUX配置 2.3、LCU配置 2.4、Trgmux配置 2.5、Emios配置 2.6、代码实现 1、概述 碰到光电编码器、磁编码器等,有时候传出来的位置信息为ABZ的方式,在S32K3里面通过TRGMUX、LCU、Emios结合的方式可以实现ABZ解码。 官方…...

【深度好文】simhash文本去重流程

对于类似于头条客户端而言,推荐的每一刷的新闻都必须是不同的新闻,这就需要对新闻文本进行排重。传统的去重一般是对文章的url链接进行排重,但是对于抓取的网页来说,各大平台的新闻可能存在重复,对于只通过文章url进行排重是不靠谱的,为了解决这个痛点于是就提出了用simh…...

主流的开发语言和开发环境介绍

个人浅见&#xff0c;不喜勿喷&#xff0c;谢谢 软件开发是一个涉及多个方面的复杂过程&#xff0c;其中包括选择合适的编程语言和开发环境。编程语言是软件开发的核心&#xff0c;它定义了程序员用来编写指令的语法和规则。而开发环境则提供了编写、测试和调试代码的工具和平台…...

List去重有几种方式

目录 1、for循环添加去重 2、for 双循环去重 3、for 双循环重复坐标去重 4、Set去重 5、stream流去重 1、for循环添加去重 List<String> oldList new ArrayList<>();oldList.add("张三");oldList.add("张三");oldList.add("李四&q…...

使用C#+NPOI进行Excel处理,实现多个Excel文件的求和统计

一个简易的控制台程序&#xff0c;使用C#NPOI进行Excel处理&#xff0c;实现多个Excel文件的求和统计。 前提&#xff1a; 待统计的Excel格式相同统计结果表与待统计的表格格式一致 引入如下四个动态库&#xff1a; 1. NPOI.dll 2. NPOI.OOXML.dll 3. NPOI.OpenXml4Net.dll …...

华清远见嵌入式学习——驱动开发——day9

目录 作业要求&#xff1a; 作业答案&#xff1a; 代码效果&#xff1a; ​编辑 Platform总线驱动代码&#xff1a; 应用程序代码&#xff1a; 设备树配置&#xff1a; 作业要求&#xff1a; 通过platform总线驱动框架编写LED灯的驱动&#xff0c;编写应用程序测试&…...

formality:set_constant应用

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 往期文章链接: formality:形式验证流程 scan mode func的功能检查需要把scan mode设置成0。...

sqllabs的order by注入

当我们在打开sqli-labs的46关发现其实是个表格&#xff0c;当测试sort等于123时&#xff0c;会根据列数的不同来进行排序 我们需要利用这个点来判断是否存在注入漏洞&#xff0c;通过加入asc 和desc判断页面有注入点 1、基于使用if语句盲注 如果我们配合if函数&#xff0c;表达…...

《The Art of InnoDB》第二部分|第4章:深入结构-磁盘结构-redo log

4.3 redo log 目录 4.3 redo log 4.3.1 redo log 介绍 4.3.2 redo log 的作用 4.3.3 redo log file 结构 4.3.4 redo log 提交逻辑 4.3.5 redo log 持久化逻辑 4.3.6 redo log 检查点 4.3.7 小结...

大模型安全相关论文

LLM对于安全的优势 “Generating secure hardware using chatgpt resistant to cwes,” Cryptology ePrint Archive, Paper 2023/212, 2023评估了ChatGPT平台上代码生成过程的安全性&#xff0c;特别是在硬件领域。探索了设计者可以采用的策略&#xff0c;使ChatGPT能够提供安…...

回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测

回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测 目录 回归预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多变量回归预测预测效果基本描述程序设计参考资料 预测效果…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

自定义线程池1.2

自定义线程池 1.2 1. 简介 上次我们实现了 1.1 版本&#xff0c;将线程池中的线程数量交给使用者决定&#xff0c;并且将线程的创建延迟到任务提交的时候&#xff0c;在本文中我们将对这个版本进行如下的优化&#xff1a; 在新建线程时交给线程一个任务。让线程在某种情况下…...

7种分类数据编码技术详解:从原理到实战

在数据分析和机器学习领域&#xff0c;分类数据&#xff08;Categorical Data&#xff09;的处理是一个基础但至关重要的环节。分类数据指的是由有限数量的离散值组成的数据类型&#xff0c;如性别&#xff08;男/女&#xff09;、颜色&#xff08;红/绿/蓝&#xff09;或产品类…...

【学习记录】使用 Kali Linux 与 Hashcat 进行 WiFi 安全分析:合法的安全测试指南

文章目录 &#x1f4cc; 前言&#x1f9f0; 一、前期准备✅ 安装 Kali Linux✅ 获取支持监听模式的无线网卡 &#x1f6e0; 二、使用 Kali Linux 进行 WiFi 安全测试步骤 1&#xff1a;插入无线网卡并确认识别步骤 2&#xff1a;开启监听模式步骤 3&#xff1a;扫描附近的 WiFi…...

React与原生事件:核心差异与性能对比解析

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

基于微信小程序的作业管理系统源码数据库文档

作业管理系统 摘 要 随着社会的发展&#xff0c;社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。 本文以实际运用为开发背景&#xff0c;运用软件工程原理和开发方法&#xff0c;它主要是采用java语言技术和微信小程序来完成对系统的…...

奈飞工厂官网,国内Netflix影视在线看|中文网页电脑版入口

奈飞工厂是一个专注于提供免费Netflix影视资源的在线播放平台&#xff0c;致力于为国内用户提供的Netflix热门影视内容。该平台的资源与Netflix官网基本同步&#xff0c;涵盖电影、电视剧、动漫和综艺等多个领域。奈飞工厂的界面简洁流畅&#xff0c;资源分类清晰&#xff0c;方…...