当前位置: 首页 > news >正文

YOLOv9中加入SCConv模块!

 


专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!!


一、本文介绍

        本文将一步步演示如何在YOLOv9中添加 / 替换新模块,寻找模型上的创新!

适用检测目标:   YOLOv9模块通用改进


二、改进步骤

《YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information》

        论文地址:   https://arxiv.org/abs/2402.13616

        代码地址:   https://github.com/WongKinYiu/yolov9

 2.1 创建一个脚本存放新模块

        为方便调用,这里我将脚本放在models包下,命名为extra.py。

 2.2 将模块复制到脚本中,并导入需要的包(以SCConv为例)

        我们将SCConv的代码复制到刚刚创建的extra.py脚本中。

import torch
import torch.nn as nn
import torch.nn.functional as Ffrom models.common import Convclass SCConv(nn.Module):"""https://github.com/MCG-NKU/SCNet/blob/master/scnet.py"""def __init__(self, inplanes, planes, stride=1, padding=1, dilation=1, groups=1, pooling_r=4):super(SCConv, self).__init__()self.k2 = nn.Sequential(nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),Conv(inplanes, planes, k=3, s=1, p=padding, d=dilation, g=groups, act=False))self.k3 = Conv(inplanes, planes, k=3, s=1, p=padding, d=dilation, g=groups, act=False)self.k4 = Conv(inplanes, planes, k=3, s=1, p=padding, d=dilation, g=groups, act=False)def forward(self, x):identity = xout = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)out = torch.mul(self.k3(x), out)    # k3 * sigmoid(identity + k2)out = self.k4(out)  # k4return out

2.3 对yolo.py操作

        打开models包下的yolo.py文件夹,将刚才创建的脚本导入。并在下方第700行的位置(位置可能因v9版本更新变动)加入下方代码。

2.4 运行配置文件

        创建模型配置文件(yaml文件),将我们所作改进加入到配置文件中(这一步的配置文件可以复制models  - > detect 下的yaml修改。)。对YOLO系列yaml文件不熟悉的同学可以看我往期的yaml详解教学!

YOLO系列 “.yaml“文件解读-CSDN博客

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37[-1, 1, SCConv, []],  # 38# detection head# detect[[31, 34, 38, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

3.4 训练过程

        最后,复制我们创建的模型配置,填入训练脚本(train_dual)中(不会训练的同学可以参考我之前的文章。),运行即可。

YOLOv9 最简训练教学!-CSDN博客


如果觉得本文章有用的话给博主点个关注吧!


相关文章:

YOLOv9中加入SCConv模块!

专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!! 一、本文介绍 本文将一步步演示如何在YOLOv9中添加 / 替换新模块,寻找模型上的创新! 适用检测目标: YOLOv9模块…...

代码随想录算法训练营第四十七天丨198. 打家劫舍、​ 213. 打家劫舍 II​、337. 打家劫舍 III

198. 打家劫舍 自己的思路: 初始化两个dp数组,dp[i][0]表示不偷第i户,在0-i户可以偷到的最大金额,dp[i][1]表示偷i户在0-i户可以偷到的最大金额。 class Solution:def rob(self, nums: List[int]) -> int:n len(nums)dp […...

龙蜥Anolis 8.4 anck 安装mysql5.7

el8没有用mysql5.7了,镜像里是mysql8。 禁用 sudo dnf remove mysql sudo dnf module reset mysql sudo dnf module disable mysql 修改Yum源 sudo vi /etc/yum.repos.d/mysql-community.repo [mysql57-community] nameMySQL 5.7 Community Server baseurlhttp:…...

【踩坑】修复xrdp无法关闭Authentication Required验证窗口

转载请注明出处:小锋学长生活大爆炸[xfxuezhang.cn] 问题如下,时不时出现,有时还怎么都关不掉,很烦: 解决方法一:命令行输入 dbus-send --typemethod_call --destorg.gnome.Shell /org/gnome/Shell org.gn…...

python学习笔记 - 标准库常量

Python 中有一些内置的常量,它们是一些特殊的值,通常不会改变。以下是其中一些常见的内置常量及其详细解释以及使用示例: True: 表示布尔值真。给 True 赋值是非法的并会引发 SyntaxError。 x True print(x) # 输出&#xff1a…...

视频和音频使用ffmpeg进行合并和分离(MP4)

1.下载ffmpeg 官网地址:https://ffmpeg.org/download.html 2.配置环境变量 此电脑右键点击 属性 - 高级系统配置 -高级 -环境变量 - 系统变量 path 新增 文件的bin路径 3.验证配置成功 ffmpeg -version 返回版本信息说明配置成功4.执行合并 ffmpeg -i 武家坡20…...

02| JVM堆中垃圾回收的大致过程

如果一直在创建对象,堆中年轻代中Eden区会逐渐放满,如果Eden放满,会触发minor GC回收,创建对象的时GC Roots,如果存在于里面的对象,则被视为非垃圾对象,不会被此次gc回收,就会被移入…...

R语言数据可视化之美专业图表绘制指南(增强版):第1章 R语言编程与绘图基础

第1章 R语言编程与绘图基础 目录 第1章 R语言编程与绘图基础前言1.1 学术图表的基本概念1.1.1 学术图表的基本作用1.1.2基本类别1.1.3 学术图表的绘制原则 1.2 你为什么要选择R1.3 安装 前言 这是我第一次在博客里展示学习中国作者的教材的笔记。我选择这本书的依据是作者同时…...

网站添加pwa操作和配置manifest.json后,没有效果排查问题

pwa技术官网:https://web.dev/learn/pwa 应用清单manifest.json文件字段说明:https://web.dev/articles/add-manifest?hlzh-cn Web App Manifest:Web App Manifest | MDN 当网站添加了manifest.json文件后,也引入到html中了&a…...

MongoDB聚合运算符:$cosh

文章目录 语法使用举例双曲余弦值角度双曲余弦值弧度 $cosh聚合运算符用来计算双曲余弦值&#xff0c;返回指定表达式的双曲余弦值。 语法 { $cosh: <expression> }<expression>为可被解析为数值的表达式$cosh返回弧度&#xff0c;使用$radiansToDegrees运算符可…...

Jenkins配置在远程服务器上执行shell脚本(两种方式)

Jenkins配置在远程服务器上执行shell脚本 方式一&#xff1a;通过SSH免密方式执行 说明&#xff1a;Jenkins部署在ServerA&#xff1a;10.1.1.74上&#xff0c;要运行的程序在ServerB&#xff1a;10.1.1.196 分两步 第一步&#xff1a;Linux Centos7配置SSH免密登录 Linux…...

Java+SpringBoot,打造社区疫情信息新生态

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…...

js ES6判断字符串是否以某个字符串开头或者结尾startsWith、endsWith

1.前言 startsWith&#xff1a;startsWith方法用于检查字符串是否以指定的字符串开头。 endsWith&#xff1a;endsWith方法用于检查字符串是否以指定的字符串结尾。 2.用法示例 const str Hello, world!;console.log(str.startsWith(Hello)); // true console.log(str.starts…...

预研项目完成后小批量验证(技术变更流程)

...

Bert-as-service 实战

参考&#xff1a;bert-as-service 详细使用指南写给初学者-CSDN博客 GitHub - ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT&#xff08;中文BERT-wwm系列模型&#xff09; 下载&#xff1a;https://storage.googleapis.com/bert_models/…...

微信小程序(四十七)多个token存储

注释很详细&#xff0c;直接上代码 新增内容&#xff1a; 1.基础存储模板 2.中括号实现变量名匹配 源码&#xff1a; app.js App({//提前声明的变量名token:wx.getStorageSync(toke),refreshToken:wx.getSystemInfoAsync(refreshToken),setToken(key,token){//保存token到全局…...

机器学习(II)--样本不平衡

现实中&#xff0c;样本&#xff08;类别&#xff09;样本不平衡&#xff08;class-imbalance&#xff09;是一种常见的现象&#xff0c;如&#xff1a;金融欺诈交易检测&#xff0c;欺诈交易的订单样本通常是占总交易数量的极少部分&#xff0c;而且对于有些任务而言少数样本更…...

几个好用的 VUE Table

Vue easytable - 功能恰到好处 无学习成本 上手就用Vue good table - UI 清新 功能直给 适合小项目Vxe table - 宝藏级 table 组件 高级功能低调好用 维护频率高tabulator - 元老级 table 组件 高级功能平民化AG Grid - 媲美 Excel 的 Table 组件 能想到的复杂功能它都能做到...

Vue源码系列讲解——实例方法篇【三】(生命周期相关方法)

目录 0. 前言 1. vm.$mount 1.1 用法回顾 1.2 内部原理 2. vm.$forceUpdate 2.1 用法回顾 2.2 内部原理 3. vm.$nextTick 3.1 用法回顾 3.2 JS的运行机制 3.3 内部原理 能力检测 执行回调队列 4. vm.$destory 4.1 用法回顾 4.2 内部原理 0. 前言 与生命周期相关…...

百度SEO工具,自动更新网站的工具

在网站SEO的过程中&#xff0c;不断更新网站内容是提升排名和吸引流量的关键之一。而对于大多数网站管理员来说&#xff0c;频繁手动更新文章并进行SEO优化可能会是一项繁琐且耗时的任务。针对这一问题&#xff0c;百度自动更新文章SEO工具应运而生&#xff0c;它能够帮助网站管…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...