视觉Transformers中的位置嵌入 - 研究与应用指南
视觉 Transformer 中位置嵌入背后的数学和代码简介。
自从 2017 年推出《Attention is All You Need》以来,Transformer 已成为自然语言处理 (NLP) 领域最先进的技术。 2021 年,An Image is Worth 16x16 Words² 成功地将 Transformer 应用于计算机视觉任务。从那时起,人们提出了许多基于Transformer的计算机视觉架构。
本文[1]研究了为什么位置嵌入是视觉Transformer的必要组成部分,以及不同的论文如何实现位置嵌入。它包括位置嵌入的开源代码以及概念解释。所有代码都使用 PyTorch 包。
为什么使用位置嵌入?
Attention is All You Need 指出,Transformer由于缺乏递归或卷积,无法学习有关一组标记顺序的信息。如果没有位置嵌入,Transformer对于标记的顺序是不变的。对于图像,这意味着可以对图像的补丁进行加扰,而不会影响预测的输出。
让我们看一下 Luis Zuno 的像素艺术《黄昏山》中补丁顺序的示例。原始艺术作品已被裁剪并转换为单通道图像。这意味着每个像素都有一个介于 0 和 1 之间的值。单通道图像通常以灰度显示;但是,我们将以紫色配色显示它,因为它更容易看到。
mountains = np.load(os.path.join(figure_path, 'mountains.npy'))
H = mountains.shape[0]
W = mountains.shape[1]
print('Mountain at Dusk is H =', H, 'and W =', W, 'pixels.')
print('\n')
fig = plt.figure(figsize=(10,6))
plt.imshow(mountains, cmap='Purples_r')
plt.xticks(np.arange(-0.5, W+1, 10), labels=np.arange(0, W+1, 10))
plt.yticks(np.arange(-0.5, H+1, 10), labels=np.arange(0, H+1, 10))
plt.clim([0,1])
cbar_ax = fig.add_axes([0.95, .11, 0.05, 0.77])
plt.clim([0, 1])
plt.colorbar(cax=cbar_ax);
#plt.savefig(os.path.join(figure_path, 'mountains.png'), bbox_inches='tight')
我们可以将此图像分割成大小为 20 的块。
P = 20
N = int((H*W)/(P**2))
print('There will be', N, 'patches, each', P, 'by', str(P)+'.')
print('\n')
fig = plt.figure(figsize=(10,6))
plt.imshow(mountains, cmap='Purples_r')
plt.clim([0,1])
plt.hlines(np.arange(P, H, P)-0.5, -0.5, W-0.5, color='w')
plt.vlines(np.arange(P, W, P)-0.5, -0.5, H-0.5, color='w')
plt.xticks(np.arange(-0.5, W+1, 10), labels=np.arange(0, W+1, 10))
plt.yticks(np.arange(-0.5, H+1, 10), labels=np.arange(0, H+1, 10))
x_text = np.tile(np.arange(9.5, W, P), 3)
y_text = np.repeat(np.arange(9.5, H, P), 5)
for i in range(1, N+1):
plt.text(x_text[i-1], y_text[i-1], str(i), color='w', fontsize='xx-large', ha='center')
plt.text(x_text[2], y_text[2], str(3), color='k', fontsize='xx-large', ha='center');
#plt.savefig(os.path.join(figure_path, 'mountain_patches.png'), bbox_inches='tight')
据称,视觉Transformer将无法区分原始图像和补丁被打乱的版本。
np.random.seed(21)
scramble_order = np.random.permutation(N)
left_x = np.tile(np.arange(0, W-P+1, 20), 3)
right_x = np.tile(np.arange(P, W+1, 20), 3)
top_y = np.repeat(np.arange(0, H-P+1, 20), 5)
bottom_y = np.repeat(np.arange(P, H+1, 20), 5)
scramble = np.zeros_like(mountains)
for i in range(N):
t = scramble_order[i]
scramble[top_y[i]:bottom_y[i], left_x[i]:right_x[i]] = mountains[top_y[t]:bottom_y[t], left_x[t]:right_x[t]]
fig = plt.figure(figsize=(10,6))
plt.imshow(scramble, cmap='Purples_r')
plt.clim([0,1])
plt.hlines(np.arange(P, H, P)-0.5, -0.5, W-0.5, color='w')
plt.vlines(np.arange(P, W, P)-0.5, -0.5, H-0.5, color='w')
plt.xticks(np.arange(-0.5, W+1, 10), labels=np.arange(0, W+1, 10))
plt.yticks(np.arange(-0.5, H+1, 10), labels=np.arange(0, H+1, 10))
x_text = np.tile(np.arange(9.5, W, P), 3)
y_text = np.repeat(np.arange(9.5, H, P), 5)
for i in range(N):
plt.text(x_text[i], y_text[i], str(scramble_order[i]+1), color='w', fontsize='xx-large', ha='center')
i3 = np.where(scramble_order==2)[0][0]
plt.text(x_text[i3], y_text[i3], str(scramble_order[i3]+1), color='k', fontsize='xx-large', ha='center');
#plt.savefig(os.path.join(figure_path, 'mountain_scrambled_patches.png'), bbox_inches='tight')
显然,这是与原始图像非常不同的图像,并且您不希望视觉Transformer将这两个图像视为相同。
排列的注意力不变性
让我们研究一下视觉Transformer对于标记顺序不变的说法。Transformer中对 token 顺序不变的组件是注意力模块。
注意力是根据三个矩阵(查询、键和值)计算得出的,每个矩阵都是通过将token传递到线性层而生成的。生成 Q、K 和 V 矩阵后,将使用以下公式计算注意力。
其中 Q、K、V 分别是查询、键和值; dₖ 是缩放值。为了证明注意力对 token 顺序的不变性,我们将从三个随机生成的矩阵开始来表示 Q、K 和 V。Q、K 和 V 的形状如下:
在此示例中,我们将使用 4 个预计长度为 9 的标记。矩阵将包含整数以避免浮点乘法错误。生成后,我们将交换token 0 和token 2 在所有三个矩阵中的位置。具有交换标记的矩阵将用下标 s 表示。
n_tokens = 4
l_tokens = 9
shape = n_tokens, l_tokens
mx = 20 #max integer for generated matricies
# Generate Normal Matricies
np.random.seed(21)
Q = np.random.randint(1, mx, shape)
K = np.random.randint(1, mx, shape)
V = np.random.randint(1, mx, shape)
# Generate Row-Swapped Matricies
swapQ = copy.deepcopy(Q)
swapQ[[0, 2]] = swapQ[[2, 0]]
swapK = copy.deepcopy(K)
swapK[[0, 2]] = swapK[[2, 0]]
swapV = copy.deepcopy(V)
swapV[[0, 2]] = swapV[[2, 0]]
# Plot Matricies
fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(8,8))
fig.tight_layout(pad=2.0)
plt.subplot(3, 2, 1)
mat_plot(Q, 'Q')
plt.subplot(3, 2, 2)
mat_plot(swapQ, r'$Q_S$')
plt.subplot(3, 2, 3)
mat_plot(K, 'K')
plt.subplot(3, 2, 4)
mat_plot(swapK, r'$K_S$')
plt.subplot(3, 2, 5)
mat_plot(V, 'V')
plt.subplot(3, 2, 6)
mat_plot(swapV, r'$V_S$')
注意力公式中的第一个矩阵乘法是 Q·Kᵀ=A,其中得到的矩阵 A 是一个大小等于 token 数量的正方形。当我们用 Qₛ 和 Kₛ 计算 Aₛ 时,得到的 Aₛ 的行 [0, 2] 和列 [0,2] 都与 A 交换。
A = Q @ K.transpose()
swapA = swapQ @ swapK.transpose()
modA = copy.deepcopy(A)
modA[[0,2]] = modA[[2,0]] #swap rows
modA[:, [2, 0]] = modA[:, [0, 2]] #swap cols
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(8,3))
fig.tight_layout(pad=1.0)
plt.subplot(1, 3, 1)
mat_plot(A, r'$A = Q*K^T$')
plt.subplot(1, 3, 2)
mat_plot(swapA, r'$A_S = Q_S * K_S^T$')
plt.subplot(1, 3, 3)
mat_plot(modA, 'A\nwith rows [0,2] swaped\n and cols [0,2] swaped')
下一个矩阵乘法是 A·V=A,其中生成的矩阵 A 与初始 Q、K 和 V 矩阵具有相同的形状。当我们用 Aₛ 和 Vₛ 计算 Aₛ 时,得到的 Aₛ 的行 [0,2] 与 A 交换。
A = A @ V
swapA = swapA @ swapV
modA = copy.deepcopy(A)
modA[[0,2]] = modA[[2,0]] #swap rows
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 7))
fig.tight_layout(pad=1.0)
plt.subplot(2, 2, 1)
mat_plot(A, r'$A = A*V$')
plt.subplot(2, 2, 2)
mat_plot(swapA, r'$A_S = A_S * V_S$')
plt.subplot(2, 2, 4)
mat_plot(modA, 'A\nwith rows [0,2] swaped')
axs[1,0].axis('off')
这表明,更改注意力层输入中标记的顺序会导致输出注意矩阵的相同标记行发生变化。因为注意力是对标记之间关系的计算。如果没有位置信息,更改token顺序不会改变token的关联方式。
示例
定义位置嵌入
现在,我们可以看看正弦位置嵌入的细节。该代码基于 Tokens-to-Token ViT 的公开可用 GitHub 代码。从功能上来说,位置嵌入是一个与 token 形状相同的矩阵。这看起来像:
正弦位置嵌入公式如下所示
其中 PE 是位置嵌入矩阵,i 是沿着标记的数量,j 是沿着标记的长度,d 是标记长度。代码实现:
def get_sinusoid_encoding(num_tokens, token_len):
""" Make Sinusoid Encoding Table
Args:
num_tokens (int): number of tokens
token_len (int): length of a token
Returns:
(torch.FloatTensor) sinusoidal position encoding table
"""
def get_position_angle_vec(i):
return [i / np.power(10000, 2 * (j // 2) / token_len) for j in range(token_len)]
sinusoid_table = np.array([get_position_angle_vec(i) for i in range(num_tokens)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
让我们生成一个示例位置嵌入矩阵。我们将使用 176 个tokens。每个token的长度为 768,这是 T2T-ViT代码中的默认长度。一旦生成了矩阵,我们就可以绘制它。
PE = get_sinusoid_encoding(num_tokens=176, token_len=768)
fig = plt.figure(figsize=(10, 8))
plt.imshow(PE[0, :, :], cmap='PuOr_r')
plt.xlabel('Along Length of Token')
plt.ylabel('Individual Tokens');
cbar_ax = fig.add_axes([0.95, .36, 0.05, 0.25])
plt.clim([-1, 1])
plt.colorbar(label='Value of Position Encoding', cax=cbar_ax);
#plt.savefig(os.path.join(figure_path, 'fullPE.png'), bbox_inches='tight')
放大标记的开头。
fig = plt.figure()
plt.imshow(PE[0, :, 0:301], cmap='PuOr_r')
plt.xlabel('Along Length of Token')
plt.ylabel('Individual Tokens');
cbar_ax = fig.add_axes([0.95, .2, 0.05, 0.6])
plt.clim([-1, 1])
plt.colorbar(label='Value of Position Encoding', cax=cbar_ax);
#plt.savefig(os.path.join(figure_path, 'zoomedinPE.png'), bbox_inches='tight')
具有正弦结构!
将位置嵌入应用于tokens
现在,我们可以将位置嵌入添加到我们的tokens中!我们将使用《Mountain at Dusk》,并具有与上述相同的补丁标记化。这将为我们提供 15 个长度为 20²=400 的token。
fig = plt.figure(figsize=(10,6))
plt.imshow(mountains, cmap='Purples_r')
plt.hlines(np.arange(P, H, P)-0.5, -0.5, W-0.5, color='w')
plt.vlines(np.arange(P, W, P)-0.5, -0.5, H-0.5, color='w')
plt.xticks(np.arange(-0.5, W+1, 10), labels=np.arange(0, W+1, 10))
plt.yticks(np.arange(-0.5, H+1, 10), labels=np.arange(0, H+1, 10))
x_text = np.tile(np.arange(9.5, W, P), 3)
y_text = np.repeat(np.arange(9.5, H, P), 5)
for i in range(1, N+1):
plt.text(x_text[i-1], y_text[i-1], str(i), color='w', fontsize='xx-large', ha='center')
plt.text(x_text[2], y_text[2], str(3), color='k', fontsize='xx-large', ha='center')
cbar_ax = fig.add_axes([0.95, .11, 0.05, 0.77])
plt.clim([0, 1])
plt.colorbar(cax=cbar_ax);
#plt.savefig(os.path.join(figure_path, 'mountain_patches_w_colorbar.png'), bbox_inches='tight')
当我们将这些补丁转换为token时,它看起来像
tokens = np.zeros((15, 20**2))
for i in range(15):
patch = gray_mountains[top_y[i]:bottom_y[i], left_x[i]:right_x[i]]
tokens[i, :] = patch.reshape(1, 20**2)
tokens = tokens.astype(int)
tokens = tokens/255
fig = plt.figure(figsize=(10,6))
plt.imshow(tokens, aspect=5, cmap='Purples_r')
plt.xlabel('Length of Tokens')
plt.ylabel('Number of Tokens')
cbar_ax = fig.add_axes([0.95, .36, 0.05, 0.25])
plt.clim([0, 1])
plt.colorbar(cax=cbar_ax)
现在,我们可以以正确的形状进行位置嵌入:
PE = get_sinusoid_encoding(num_tokens=15, token_len=400).numpy()[0,:,:]
fig = plt.figure(figsize=(10,6))
plt.imshow(PE, aspect=5, cmap='PuOr_r')
plt.xlabel('Length of Tokens')
plt.ylabel('Number of Tokens')
cbar_ax = fig.add_axes([0.95, .36, 0.05, 0.25])
plt.clim([0, 1])
plt.colorbar(cax=cbar_ax)
我们现在准备将位置嵌入添加到标记中。位置嵌入中的紫色区域将使令牌变暗,而橙色区域将使它们变亮。
mountainsPE = tokens + PE
resclaed_mtPE = (position_mountains - np.min(position_mountains)) / np.max(position_mountains - np.min(position_mountains))
fig = plt.figure(figsize=(10,6))
plt.imshow(resclaed_mtPE, aspect=5, cmap='Purples_r')
plt.xlabel('Length of Tokens')
plt.ylabel('Number of Tokens')
cbar_ax = fig.add_axes([0.95, .36, 0.05, 0.25])
plt.clim([0, 1])
plt.colorbar(cax=cbar_ax)
您可以从原始token中看到结构,以及位置嵌入中的结构!这两条信息都将被转发到Transformer中。
Source: https://towardsdatascience.com/position-embeddings-for-vision-transformers-explained-a6f9add341d5
本文由 mdnice 多平台发布
相关文章:
视觉Transformers中的位置嵌入 - 研究与应用指南
视觉 Transformer 中位置嵌入背后的数学和代码简介。 自从 2017 年推出《Attention is All You Need》以来,Transformer 已成为自然语言处理 (NLP) 领域最先进的技术。 2021 年,An Image is Worth 16x16 Words 成功地将 Transformer 应用于计算机视觉任务…...
真香定律!我用这种模式重构了第三方登录
分享是最有效的学习方式。 博客:https://blog.ktdaddy.com/ 老猫的设计模式专栏已经偷偷发车了。不甘愿做crud boy?看了好几遍的设计模式还记不住?那就不要刻意记了,跟上老猫的步伐,在一个个有趣的职场故事中领悟设计模…...
Linux入门到入土
Linxu Linux 简介 Linux 内核最初只是由芬兰人林纳斯托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的。 Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 POSIX(可移植操作系统接口)…...
基础真空技术外国文献Fundamentals of Vacuum Technology
基础真空技术外国文献Fundamentals of Vacuum Technology...
LeetCode每日一题【c++版】- 用队列实现栈与用栈实现队列
用队列实现栈 题目描述 请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。 实现 MyStack 类: void push(int x) 将元素 x 压入栈顶。int pop() 移除…...
深入理解快速排序算法:从原理到实现
目录 1. 引言 2. 快速排序算法原理 3. 快速排序的时间复杂度分析 4. 快速排序的应用场景 5. 快速排序的优缺点分析 5.1 优点: 5.2 缺点: 6. Java、JavaScript 和 Python 实现快速排序算法 6.1 Java 实现: 6.2 JavaScript 实现&#…...
设计模式----装饰器模式
在软件开发过程中,有时想用一些现存的组件。这些组件可能只是完成了一些核心功能。但在不改变其结构的情况下,可以动态地扩展其功能。所有这些都可以釆用装饰器模式来实现。 装饰器模式 允许向一个现有的对象添加新的功能,同时又不改变他的…...
Golang pprof 分析程序的使用内存和执行时间
一、分析程序执行的内存情况 package mainimport ("os""runtime/pprof" )func main() {// ... 你的程序逻辑 ...// 将 HeapProfile 写入文件f, err : os.Create("heap.prof")if err ! nil {panic(err)}defer f.Close()pprof.WriteHeapProfile(f…...
C/C++平方和问题(蓝桥杯)
题目描述: 小明对数位中含有2、0、1、9 的数字很感兴趣,在1 到40 中这样的数包 括1、2、9、10 至32、39 和40,共28 个,他们的和是574,平方和是14362。 注意,平方和是指将每个数分别平方后求和。 请问&#…...
(libusb) usb口自动刷新
文章目录 libusb自动刷新程序Code目录结构Code项目文件usb包code包 效果描述重置reset热拔插使用 END libusb 在操作USB相关内容时,有一个比较著名的库就是libusb。 官方网址:libusb 下载: 下载源码官方编好的库github:Release…...
NLP(一)——概述
参考书: 《speech and language processing》《统计自然语言处理》 宗成庆 语言是思维的载体,自然语言处理相比其他信号较为特别 word2vec用到c语言 Question 预训练语言模型和其他模型的区别? 预训练模型是指在大规模数据上进行预训练的模型,通常…...
智慧公厕:打造智慧城市的环卫明珠
在城市建设中,公共卫生设施的完善和智能化一直是重要环节。而智慧公厕作为智慧城市建设的重要组成部分,发挥着不可替代的作用。本文以智慧公厕源头实力厂家广州中期科技有限公司,大量精品案例现场实景实图,解读智慧公厕如何助力打…...
[LeetBook]【学习日记】寻找链表相交节点
来源于「Krahets」的《图解算法数据结构》 https://leetcode.cn/leetbook/detail/illustration-of-algorithm/ 本题与主站 160 题相同:https://leetcode-cn.com/problems/intersection-of-two-linked-lists/ 训练计划 V 某教练同时带教两位学员,分别以…...
【Python】OpenCV-使用ResNet50进行图像分类
使用ResNet50进行图像分类 如何使用ResNet50模型对图像进行分类。 import os import cv2 import numpy as np from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions from tensorflow.keras.preprocessing import image# 设置…...
TypeError: `dumps_kwargs` keyword arguments are no longer supported
TypeError: dumps_kwargs keyword arguments are no longer supported 1. 问题描述2. 解决方法 1. 问题描述 使用 FastChat 启动私有大语言模型,通过一些 UI 工具进行访问时,报以下错误。 略 2024-02-29 09:26:14 | ERROR | stderr | yield f"…...
设计模式学习笔记 - 设计原则 - 3.里氏替换原则,它和多态的区别是什么?
前言 今天来学习 SOLID 中的 L:里氏替换原则。它的英文翻译是 Liskov Substitution Principle,缩写为 LSP。 英文原话是: Functions that use points of references of base classes must be able to use objects of derived classes withou…...
java实现图片转pdf,并通过流的方式进行下载(前后端分离)
首先需要导入相关依赖,由于具体依赖本人也不是记得很清楚了,所以简短的说一下。 iText:PDF 操作库,用于创建和操作 PDF 文件。可通过 Maven 或 Gradle 引入 iText 依赖。 MultipartFile:Spring 框架中处理文件上传的类…...
如何系统的学习Python——Python的基本语法
学习Python的基本语法是入门的第一步,以下是一些常见的基本语法概念: 注释: 用#符号来添加单行注释,或使用三引号(或""")来添加多行注释。 # 这是一个单行注释 这是 多行 注释 变量和数据类型: 变量用…...
相机,棱镜和光场
一、成像方法 Imaging Synthesis Capture 1.Synthesis(图形学上)合成:比如之前学过的光线追踪或者光栅化 2.Capture(捕捉):把真实世界存在的东西捕捉成为照片 二、相机 1.小孔成像 利用小孔成像的相…...
【图像版权】论文阅读:CRMW 图像隐写术+压缩算法
不可见水印 前言背景介绍ai大模型水印生成产物不可见水印CRMW 在保护深度神经网络模型知识产权方面与现有防御机制有何不同?使用图像隐写术和压缩算法为神经网络模型生成水印数据集有哪些优势?特征一致性训练如何发挥作用,将水印数据集嵌入到…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...
