当前位置: 首页 > news >正文

2024大语言模型LLM基础|语义搜索Semantic_Search全解

目录

语义搜索Semantic_Search代码详解

为甚麽用Pinecone做向量索引?优点是什么?

有哪些常见向量索引方法?

Pinecone做向量索引怎么用?

向量索引全解:含原理解析:


语义搜索Semantic_Search代码详解

1.导入各个库

import warnings
warnings.filterwarnings('ignore')
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone, ServerlessSpec
from DLAIUtils import Utils
import DLAIUtilsimport os
import time
import torch

2.导入quora的数据集dataset,并划分数据集

dataset = load_dataset('quora', split='train[240000:290000]')

3.设置模型:使用'all-MiniLM-L6-v2'语言模型,SentenceTransformer

device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device != 'cuda':print('Sorry no cuda.')
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
  • SentenceTransformer 是一个用于处理文本嵌入的库,它提供了预训练的语义文本嵌入模型。
  • 'all-MiniLM-L6-v2' 是一个特定模型的名称,表示使用的是预训练模型的某个版本。这个模型的选择可能基于你的任务和数据,因为不同的预训练模型在捕捉语义信息方面有不同的性能。
  • device=device 是一个可选参数,用于指定在哪个设备上运行模型。在这里,它根据你的设备是否支持CUDA(GPU加速)来选择在CPU还是GPU上运行模型。

4.将数据进行编码,编码方式(以模型为主)

query = 'which city is the most populated in the world?'
xq = model.encode(query)
xq.shape

5.设置向量索引方法,调用api

utils = Utils()
PINECONE_API_KEY = utils.get_pinecone_api_key()

使用提供的 API 密钥(PINECONE_API_KEY)创建了一个 Pinecone 实例。这个密钥可能是从 Pinecone 获取的,用于验证和授权 API 请求。

一 定义索引名称:

INDEX_NAME = utils.create_dlai_index_name('dl-ai')

变量 INDEX_NAME 被赋予一个由 utils 模块中的 create_dlai_index_name 函数生成的值。这似乎是创建一个与深度学习和人工智能相关的索引名称,基础名称为 'dl

二 检查现有索引并删除:

if INDEX_NAME in [index.name for index in pinecone.list_indexes()]:pinecone.delete_index(INDEX_NAME)

此块检查是否已存在指定名称的索引(INDEX_NAME)。如果存在,则使用 pinecone.delete_index() 删除索引。这一步确保在创建新索引时没有冲突,可以保持一个干净的状态。

三 创建新索引:

pinecone.create_index(name=INDEX_NAME,dimension=model.get_sentence_embedding_dimension(),metric='cosine',spec=ServerlessSpec(cloud='aws', region='us-west-2')
)

在这里,使用 pinecone.create_index() 创建了一个新索引。它指定了索引名称(name)、从某个模型中获取的嵌入维度(dimension)、相似性度量(在本例中为 'cosine')和服务器规格(云提供商和地区)。

6.批量插入向量到 Pinecone:

for i in tqdm(range(0, len(questions), batch_size)):# 找到批次的结束位置i_end = min(i + batch_size, len(questions))# 创建批次的 IDsids = [str(x) for x in range(i, i_end)]# 创建批次的元数据metadatas = [{'text': text} for text in questions[i:i_end]]# 创建嵌入向量xc = model.encode(questions[i:i_end])# 为 upsert 创建记录列表records = zip(ids, xc, metadatas)# upsert 到 Pineconeindex.upsert(vectors=records)
  • 使用 tqdm 模块创建了一个循环,按批次处理问题列表。
  • 找到了每个批次的结束位置 i_end
  • 创建了批次的 IDs 列表。
  • 为批次的每个文本创建了元数据(这里是以'text'为键的字典)。
  • 使用模型 model 编码了批次中的问题,得到嵌入向量 xc
  • 创建了包含 IDs、嵌入向量和元数据的记录列表 records
  • 使用 index.upsert() 将记录列表插入到 Pinecone 索引中。

问题:

为甚麽用Pinecone做向量索引?优点是什么?

Pinecone 是一个托管的向量数据库服务,专注于高效的相似性搜索。向量索引是一种在高维向量空间中组织和存储向量的结构,使得对于给定查询向量,可以快速找到相似的向量。以下是 Pinecone 向量索引的一些优势:

  1. 高效的相似性搜索: Pinecone 提供了高效的相似性搜索功能,能够快速找到与查询向量相似的向量。这对于许多应用场景,如推荐系统、搜索引擎、聚类等都非常有用。

  2. 托管服务: Pinecone 是一个云端托管的服务,无需用户担心底层基础设施的管理和维护。它简化了向量数据库的使用,让用户可以专注于应用开发而不必担心硬件和网络配置。

  3. 弹性伸缩: Pinecone 提供弹性伸缩的能力,可以处理大规模的向量数据。无论是小规模的应用还是大规模的生产系统,Pinecone 都能适应不同的需求。

  4. 支持多种应用场景: Pinecone 的向量索引适用于各种应用场景,包括自然语言处理、计算机视觉、推荐系统等。用户可以根据具体的需求上传和查询向量,从而支持多种应用。

  5. 内置距离度量: Pinecone 内置了多种距离度量,包括余弦相似度、欧氏距离等。用户可以根据具体的应用选择合适的度量来进行相似性比较。

使用 Pinecone 向量索引的目的是将一批文本数据的嵌入向量上传到 Pinecone 索引中,以便后续进行相似性搜索。这对于需要快速检索与给定查询文本相似的文本数据的应用非常有用,比如文本搜索、推荐系统等。 Pineacone 的索引服务提供了有效的相似性搜索功能,可以大大简化开发者在这方面的工作。

有哪些常见向量索引方法?
  1. 树结构(如 KD 树、Ball 树): 这些树结构允许数据集在树的节点中进行分割,每个节点存储一个向量。查询时,树结构允许系统跳过某些节点,只遍历那些可能包含相似项的节点,从而缩小搜索范围。

  2. 局部敏感哈希(Locality-Sensitive Hashing,LSH): LSH 是一种哈希技术,它在向量空间中对相似的向量映射到相同的哈希桶的概率更高。这样的设计可以在哈希桶中找到可能相似的向量,从而进行近似搜索。

  3. 分级索引: 将向量空间划分为多个级别,每个级别上建立一个索引。首先在粗略级别上进行搜索,然后在更细致的级别上进行搜索,以逐渐缩小候选集合。

  4. 递进式索引: 使用递进式索引,先从一个较小的索引开始搜索,然后根据需要逐步增加索引的大小。这种方式可以在保证搜索效率的同时,降低计算成本。

Pinecone做向量索引怎么用?

Pinecone 是一个云端的向量索引服务,用于存储和检索高维向量,支持高效的相似性搜索。以下是使用 Pinecone 进行向量索引的基本步骤:

  1. 创建 Pinecone 帐户: 首先,你需要在 Pinecone 官方网站上创建一个账户(Pinecone 官方网站)。

  2. 获取 API Key: 登录 Pinecone 后,在控制台中生成 API Key,该 Key 将用于访问 Pinecone 服务。

  3. 安装 Pinecone Python 客户端库: 在你的 Python 环境中安装 Pinecone 客户端库。可以使用以下命令:

pip install pinecone-client
  1. 导入 Pinecone 客户端库: 在 Python 脚本或 Jupyter 环境中导入 Pinecone 客户端库:

    import pinecone
  2. 设置 API Key: 使用你在 Pinecone 控制台生成的 API Key 进行身份验证:

    pinecone.init(api_key="YOUR_API_KEY")
  3. 创建索引: 创建一个新的索引以存储向量:

    index_name = "your_index_name" pinecone.create_index(index_name, dimension=YOUR_VECTOR_DIMENSION)

    这里的 YOUR_VECTOR_DIMENSION 是你的向量维度,需要根据你的数据进行设置。

  4. 插入向量: 将向量插入到索引中:

    vectors = [...] # 你的向量列表 
    pinecone.index(index_name).upsert(items=vectors)
  5. 进行相似性搜索: 使用查询向量进行相似性搜索:

    query_vector = [...] # 你的查询向量 
    results = pinecone.index(index_name).query(queries=[query_vector])

    results 包含了与查询向量相似的项的信息。

向量索引全解:含原理解析:
十分钟带你入门向量检索技术 - 知乎

相关文章:

2024大语言模型LLM基础|语义搜索Semantic_Search全解

目录 语义搜索Semantic_Search代码详解 为甚麽用Pinecone做向量索引?优点是什么? 有哪些常见向量索引方法? Pinecone做向量索引怎么用? 向量索引全解:含原理解析: 语义搜索Semantic_Search代码详解 1…...

vue中使用echarts实现人体动态图

最近一直处于开发大屏的项目,在开发中遇到了一个小知识点,在大屏中如何实现人体动态图。然后看了下echarts官方文档,根据文档中的示例调整出来自己想要的效果。 根据文档上发现 series 中 type 类型设置为 象形柱形图,象形柱图是…...

结构化思维助力Prompt创作:专业化技术讲解和实践案例

结构化思维助力Prompt创作:专业化技术讲解和实践案例 最早接触 Prompt engineering 时, 学到的 Prompt 技巧都是: 你是一个 XX 角色… 你是一个有着 X 年经验的 XX 角色… 你会 XX, 不要 YY.. 对于你不会的东西, 不要瞎说!…对比什么技巧都不用, 直接像使用搜索引…...

【0272】postgres内核分配 MyBackendId 实现原理(MyBackendId、MyProc、shmInvalBuffer)(三)

相关文章: 【0255】揭晓pg内核中MyBackendId的分配机制(后端进程Id,BackendId)(一) 【0256】揭晓pg内核中MyBackendId的分配机制(后端进程Id,BackendId)(二) 第一个backend process前,shmInvalBuffer的值情况 (gdb) p *shmInvalBuffer $153 = {minMsgNum =...

AUKFUKF的MATLAB程序,含源码

adaptive UKF与UKF效果对比 只有一个m文件,直接拖到MATLAB上面就能运行并输出结果了 部分结果 程序源码 % adaptive UKF与UKF效果对比 % author:Evand % 作者联系方式:evandjiang@qq.com(除前期达成一致外,付费咨询) % date: 2023-11-07 % Ver1 clear;clc;close all; %%…...

STM32(13)串口

串口的数据帧 1.空闲 2.起始位 3.数据位 4.校验位(可有可无) 为了验证数据传输是否出错而设立的比特位 1和4传输方式比较常见 校验规则: 根据1的个数,校验位会自己补0或1 5.停止位 例子: 同步通信 异步通信 波特率 …...

Element(Java后端入门篇)

Element(Java后端入门篇) Element:是饿了么公司前端开发团队提供的一套基于Vue的网站组件库,用于快速构建网页组件:组成网页的部件,例如超链接、按钮、图片、表格等等~ Element快速入门 引入Element的css、js文件和V…...

qt5和gstreamer开发环境安装配置

构建KDE虚拟机环境 1、安装virtualBox 2、导入镜像 配置QtCreator开发环境 https://blog.csdn.net/weixin_45824067/article/details/131970558(安装的是qt6) https://blog.csdn.net/m0_70849943/article/details/132472950 (安装的qt版本为5.14.2&…...

基于Python3的数据结构与算法 - 10 计数排序

一、问题 对列表进行排序,已知列表中的数范围都在0到100之间。设计时间复杂度为O(n)的算法。 二、解决思路 我们已知数字的范围,那么我们可以将数字的个数得到: 例如:有一个0~5的列表 [1,3,2,4,1,2,3,1,3,5] 则共有0个0&am…...

力扣206反转链表

206.反转链表 力扣题目链接(opens new window) 题意:反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 1,双指针 2,递归。递归参考双指针更容易写, 为什么不用头插…...

【python实战】--图片创作视频

系列文章目录 文章目录 系列文章目录前言一、VideoWriter_fourcc()常见的编码参数二、使用步骤1.引入库 总结 前言 一、VideoWriter_fourcc()常见的编码参数 cv2.VideoWriter_fourcc(‘M’, ‘P’, ‘4’, ‘V’)MPEG-4编码 .mp4 可指定结果视频的大小cv2.VideoWriter_fourcc…...

数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(代码部分)

文章: 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一) 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二) 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(总) 代码: 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(代码…...

AWS EKS(AWS云里面的K8S)

问题 初步使用EKS 步骤 安装AWS CLI 第一步是在自己的笔记本电脑上面安装AWS提供的CLI(命令行工具),这里就不详细介绍了,都是next的步骤。具体可以参考啊aws cli安装的相关教程网页,具体地址如下: http…...

Azkaban 大数据 任务调度

参考视频:尚硅谷大数据Azkaban 3.x教程(全新发布)_哔哩哔哩_bilibili Azkaban: 是一个定时、批量工作流任务调度器(工作流程调度,定时调度) 常见的开源调度系统: 简单单一的任务调度: Linux的…...

从预训练到通用智能(AGI)的观察和思考

1.预训练词向量 预训练词向量(Pre-trained Word Embeddings)是指通过无监督学习方法预先训练好的词与向量之间的映射关系。这些向量通常具有高维稠密特征,能够捕捉词语间的语义和语法相似性。最著名的预训练词向量包括Google的Word2Vec&#…...

四种垃圾回收算法

1.标记清除算法 该算法先标记,后清除,将所有需要回收的算法进行标记,然后清除;这种算法的缺点是:效率比较低;标记清除后会出现大量不连续的内存碎片,这些碎片太多可能会使存储大对象会触发GC回…...

stm32f103zet6笔记1-led工程

1、选择串口调试 2、LED0连接到PB5,PB5设置为推挽输出。PE5同理。 3、生成成对的.c,.h文件。 4、debugger选择j-link。 5、connection选择SWD。 6、编写bsp_led.c,bsp_led.h文件。 7、下载调试,可以看到LED0 500ms闪烁一次,LED1 1000ms闪烁一…...

OpenDDS的Qos策略

目录 1、前言2、QoS策略2.1、LIVELINESS2.2、RELIABILITY2.3、HISTORY2.4、DURABILITY2.5、DURABILITY_SERVICE2.6 、RESOURCE_LIMITS2.7、PARTITION2.8、DEADLINE2.9、LIFESPAN2.10、USER_DATA2.11、TOPIC_DATA2.12、GROUP_DATA2.13、TRANSPORT_PRIORITY2.14、LATENCY_BUDGET2…...

string基本操作(C++)

增 1.1 “” str str ss;cout << str << endl; //234561提取字串 2.1 substr substr(pos): 提取从位置pos开始到末尾的子串。 #include <iostream> #include <string> using namespace std;int main(){string str "123456";//substr(pos…...

【网站项目】123网上书城系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...