Leetcode 3049. Earliest Second to Mark Indices II
- Leetcode 3049. Earliest Second to Mark Indices II
- 1. 解题思路
- 2. 代码实现
- 3. 算法优化
- 题目链接:3049. Earliest Second to Mark Indices II
1. 解题思路
这道题我看貌似难度报表,比赛的时候貌似只有36个人搞定了这道题目,然后最快的人耗时也花了40min以上,就很离谱,和平时基本15分钟就能有大佬全部做出来4道题的情况完全不懂,就很吓人。
所以基本上我对这道题也算是一个半放弃的状态,不过后来还是看了一下,然后发现其实也不是完全无法上手,本质上还是求一个处理的最优解,且显然这个操作依然是单调的,即从某一个位置开始,后续所有的操作序列都可以使得所有的位置都被mark上。
因此,最开始我的思路也是二分法来求任意一个位置作为操作序列的结束点时能否判断其是否可以使得所有的位置都被mark上,然后就和上一题一样,这里就变成了一个贪婪算法,要最优的分配点数使得所有的值都可以先降为0然后再mark上。
但是比较尴尬的是这里我们的贪婪算法并没有完成,因此有以下一个判断无法彻底想明白:
- 已知任何一次直接归零操作都必须附加一次mark操作进行完成,因此对于任意一个点,我们需要判断是否要等待后续直接操作位然后再多加一轮操作使之mark还是直接使用当前富裕的点数(如果有的话)进行归零然后mark。
因此后续干脆就是直接绕开这个,走了最暴力的动态规划的方法,遍历了所有的可能,即每一个位置到底是走的快速清零还是进行-1或者mark操作,这里,显然如果要进行快速清零那必然是在某个位置在changeIndices当中最早出现的位置上。
但是,直接地实现会出现内存爆炸的情况,因此,我们做了一些不严谨的剪枝,即如果某次快速清零可以省出100以上的富裕,那么必走快速清零,反之考虑是否忽略掉这个快速清零的路线。
需要强调,这个方式是不严谨的,因为如果存在全面富裕了非常多的点数远大于100,而最后来一个可以清空100的操作,那不一定要走快速清零的,因为那样会需要额外多一次操作。
但是对于绝大多数的情况上述结果是对的,在这里也确实可以通过测试样例。
2. 代码实现
给出python代码实现如下:
class Solution:def earliestSecondToMarkIndices(self, nums: List[int], changeIndices: List[int]) -> int:n, m = len(nums), len(changeIndices)changeIndices = [x-1 for x in changeIndices]needed = sum(nums) + nfirst_seen = {}for i, x in enumerate(changeIndices):if x not in first_seen and nums[x] > 1:first_seen[x] = ifirst_seen = {v:k for k, v in first_seen.items()}@lru_cache(None)def dp(idx, need, extra):if need <= 1 and extra <= 1:return idxelif idx >= m:return mif idx not in first_seen:return dp(idx+1, need-1, max(extra-1, 0))i = first_seen[idx]if nums[i] >= 100:return dp(idx+1, need-nums[i], extra+1)else:return min(dp(idx+1, need-1, max(extra-1, 0)), dp(idx+1, need-nums[i], extra+1))ans = dp(0, needed, 0)return ans+1 if ans != m else -1
提交代码评测得到:耗时1219ms,占用内存288.9MB。
3. 算法优化
因为前面也反复强调了,上述解法有效,但是剪枝的存在使得上述解法并不严谨,因此,我们在这里摘录一下其他大佬们的解法作为补充,有兴趣的读者可以自行研读学习一下,这里就让我偷个懒了……
class Solution:def earliestSecondToMarkIndices(self, nums: List[int], changeIndices: List[int]) -> int:first_idx = [-1] * len(nums)for i in range(len(changeIndices)):if first_idx[changeIndices[i]-1] == -1:first_idx[changeIndices[i]-1] = ifor i, num in enumerate(nums):if num <= 1:first_idx[i] = -1default_needs = sum(nums) + len(nums)def is_possible(k):left = 0h = []pos_count = 0flag = Falsefor j in range(k, -1, -1):if flag:pos_count += 1flag = Falseelse:flag = Trueleft += 1i1 = first_idx[changeIndices[j]-1]if i1 == j:heapq.heappush(h, [nums[changeIndices[j]-1] - 1, changeIndices[j]-1])if len(h) > pos_count:heapq.heappop(h)return default_needs - sum(h1[0] for h1 in h) <= leftans = 0return ansl, r = len(nums)-1, len(changeIndices)-1while l < r:m = (l + r) // 2if is_possible(m):r = melse:l = m + 1if l > r or not is_possible(l):return -1return l+1
相关文章:
Leetcode 3049. Earliest Second to Mark Indices II
Leetcode 3049. Earliest Second to Mark Indices II 1. 解题思路2. 代码实现3. 算法优化 题目链接:3049. Earliest Second to Mark Indices II 1. 解题思路 这道题我看貌似难度报表,比赛的时候貌似只有36个人搞定了这道题目,然后最快的人…...
CrossOver 24下载-CrossOver 24 for Mac下载 v24.0.0中文永久版
CrossOver 24是一款可以让mac用户能够自由运行和游戏windows游戏软件的虚拟机类应用,虽然能够虚拟windows但是却并不是一款虚拟机,也不需要重启系统或者启动虚拟机,类似于一种能够让mac系统直接运行windows软件的插件。它以其出色的跨平台兼容…...
算法设计.
文章目录 1. 贪心算法:只看当前1.1 零钱兑换问题:力扣322 2. 活动选择问题3. 动态规划3.1 不同路径:3.2 0-1背包问题3.3 完全背包问题3.4 零钱兑换-动态规划 4. 最长公共字串--动态规划5. 最长公共子序列 1. 贪心算法:只看当前 1…...
20240304金融读报:票据贴现数据挖掘与新质生产力信贷创新
1、【他山之石】票据贴现数据挖掘:邮储三步走(为存量科技企业提供贴现、拉国家科技名单拓客、通过贴现激活睡眠对公户、提供不止贴现业务) 2、【宏观经济】函数推算的潜在增长率2025之前为4%,2025-2035间为3%。破局在于通过改革、…...
05. Nginx入门-Nginx访问控制
测试环境 此处使用的yum安装的Nginx路径。 此处域名均在本地配置hosts。 主配置文件 路径:/etc/nginx/nginx.conf user nginx; worker_processes auto;error_log /var/log/nginx/error.log notice; pid /var/run/nginx.pid;events {worker_connection…...
S2---FPGA-A7板级原理图硬件实战
视频链接 FPGA-A7板级系统硬件实战01_哔哩哔哩_bilibili FPGA-A7板级原理图硬件实战 基于XC7A100TFGG484的FPGA硬件设计流程图 A7核心板,是基于XILINX公司的ARTIX-7系列100T的XC7A100T,2FGG484I这款芯片开发的高性能核心板,具有高速,高带宽&a…...
RK DVP NVP6158配置 学习
NVP6158简介 NVP6158C是一款4通道通用RX,提供高质量图像的芯片。它接受来自摄像机和其他视频信号的独立4通道通用输入来源。它将4通道通用1M至8M 7.5P视频格式数字化并解码为代表8位ITU-R BT.656/1120 4:2:2格式的数字分量视频,并将单独的BT.601格式与27…...
C++基础2:C++基本数据类型和控制结构
此专栏为移动机器人知识体系下的编程语言中的 C {\rm C} C从入门到深入的专栏,参考书籍:《深入浅出 C {\rm C} C》(马晓锐)和《从 C {\rm C} C到 C {\rm C} C精通面向对象编程》(曾凡锋等)。 2.C基本数据类型和控制结构 2.1 C基本数据类型 程序是由算法…...
HFSS仿真双频微带天线学习笔记
HFSS仿真双频微带天线 文章目录 HFSS仿真双频微带天线1、 求解器设置2、 建模3、 激励方式设置4、 边界条件设置5、 扫频设置6、 设计检查,仿真分析7、 数据后处理 这里重点关注HFSS软件的操作,关于理论知识将在后面的文章中进行更新。 设计要求…...
【十一】【SQL】外连接(左外连接,右外连接)
数据库中的外连接(Outer Join)用于连接两个表,并包括两个表中的匹配行以及左表(LEFT JOIN)或右表(RIGHT JOIN)中未匹配的行。外连接分为两种主要类型: 左外连接(LEFT OU…...
敏捷开发模型:一种灵活、协作和持续的软件开发方法
敏捷开发模型:一种灵活、协作和持续的软件开发方法 引言 在软件开发领域,随着市场需求的不断变化和技术的迅速发展,传统的瀑布模型逐渐暴露出其局限性。为了应对这些挑战,敏捷开发模型应运而生。敏捷开发模型强调灵活、协作和持…...
软件设计师10--计算机组成与体系结构章节回顾
软件设计师10--计算机组成与体系结构章节回顾 章节重要内容考情分析 章节重要内容 考情分析...
数据库分库分表中间件选择
目前分库分表的中间件有三种设计思路,分别是: 采用分散式架构,适用于用Java开发的高性能轻量级OLTP应用程序,以Sharding-JDBC为代表。采用中间层Proxy架构,提供了静态输入和所有语言支持,适用于OLAP应用程…...
代码随想录算法训练营第22天|235.二叉搜索树的最近公共祖先、701.二叉搜索树中的插入操作、450.删除二叉搜索树中的节点
目录 一、力扣235.二叉搜索树的最近公共祖先1.1 题目1.2 思路1.3 代码 二、力扣701.二叉搜索树中的插入操作2.1 题目2.2 思路2.3 代码 三、力扣450.删除二叉搜索树中的节点3.1 题目3.2 思路3.3 代码3.4 总结 一、力扣235.二叉搜索树的最近公共祖先 1.1 题目 1.2 思路 利用二叉…...
基于SpringBoot的医护人员排班系统详细开题报告(源码)
项目源码:https://gitee.com/oklongmm/biye2 引言 医护人员排班系统是医疗机构中的重点管理工作之一。借助现代化的计算机技术,可以大大提升排班的效率和精准度。因此,本研究旨在使用SpringBoot框架设计和实现一个功能完善的医护人员排班…...
CDH6.3.1离线安装
一、从官方文档整体认识CDH 官方文档地址如下: CDH Overview | 6.3.x | Cloudera Documentation CDH是Apache Hadoop和相关项目中最完整、测试最全面、最受欢迎的发行版。CDH提供Hadoop的核心元素、可扩展存储和分布式计算,以及基于Web的用户界面和重…...
Pytorch之卷积操作
卷积是一种基本的数学操作,常用于信号处理和图像处理领域。在计算机视觉中,卷积操作是一种重要的技术,用于提取图像的特征并进行图像处理。 卷积操作基于一个卷积核(也称为滤波器或权重),它是一个小的矩阵…...
2024年春招小红书前端实习面试题分享
文章目录 导文面试重点一、方便介绍一下,你之前实习都做了什么嘛?二、 可以讲一下封装组件相关逻辑嘛?1. 为什么要封装组件?2. 封装组件的步骤3. 封装组件的原则4. 组件的复用和扩展5. 组件的维护和文档 三、项目的性能优化你有什…...
软件测试--性能测试工具JMeter
软件测试--性能测试工具JMeter 主流性能测试工具1.主流性能测试工具Loadrunner和Jmeter对比 —— 相同点2.主流性能测试工具Loadrunner和Jmeter对比 —— 不同点JMeter基本使用JMeter环境搭建1.安装JDK:2.安装Jmeter:3.注意点:JMeter功能概要1. JMeter文件目录介绍1.1 bin目…...
c++/c图的邻近矩阵表示
#include<iostream> using namespace std;#define MaxVerterNum 100 typedef char VerterType; typedef int EdgeType; typedef struct {VerterType vexs[MaxVerterNum]; // 存储顶点EdgeType edges[MaxVerterNum][MaxVerterNum]; // 存储邻接矩阵int n, e; // 顶点数和边…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
