当前位置: 首页 > news >正文

Frida实战:Java、Native、SO层面的Hook与主动调用详解

引言

Frida是一款强大的动态代码插桩工具,支持对Android和iOS应用进行实时调试和注入。本文将通过实例详细解析如何在Frida中实现对Java层、Native层(JNI)以及.so库内函数的Hook与主动调用。

一、Hook Java层函数

首先,我们展示如何使用Frida Hook Java层的方法:

Javascript
// 引入Frida的Java API
Java.perform(function () {
// 获取待Hook的目标类
var targetClass = Java.use(‘com.example.target.ClassName’);

// 定义要Hook的方法
targetClass.methodToHook.implementation = function (...args) {console.log("成功Hook到Java方法: " + this.toString());console.log("方法参数: ", args);// 调用原始方法var originalResult = this.methodToHook.apply(this, args);// 在原始方法执行后添加自定义逻辑console.log("方法返回值: ", originalResult);return originalResult;
};

});

二、Hook Native层(JNI)函数

接下来,我们演示如何Hook JNI/Native层的函数:

Javascript
// 获取目标so库模块
var libtarget = Module.findExportByName(‘libnative.so’, ‘native_function’);

// 定义Hook逻辑
Interceptor.attach(libtarget, {
onEnter: function (args) {
console.log("成功Hook到Native函数: " + this.name);

    // 输出传入参数for (var i = 0; i < args.length; i++) {console.log("参数 " + i + ": 0x" + args[i].toString(16));}
},
onLeave(retval) {// 输出返回值console.log("函数返回值: 0x" + retval.toString(16));// 如需修改返回值,可在此处进行// retval.replace(newValue);
}

});

三、主动调用Java层函数

在Frida中主动调用Java方法如下:

Javascript
Java.perform(function () {
// 获取目标类并创建实例(如适用)
var targetClass = Java.use(‘com.example.target.ClassName’);
var instance = targetClass.$new();

// 定义要调用的方法名及其参数
var methodName = 'methodToCall';
var methodArgs = [param1, param2]; // 根据实际参数填入// 主动调用Java方法
var result = instance[methodName].apply(instance, methodArgs);
console.log("Java方法调用结果: ", result);

});

// 静态方法调用示例
Java.use(‘com.example.target.StaticMethods’).staticMethodToCall(param);

四、主动调用JNI/Native层函数与.so库内部函数

对于JNI/Native函数以及.so库内部函数的主动调用,可通过创建NativeFunction对象实现:

Javascript
// 获取so库模块并找到函数地址
var libnative = Process.getModuleByName(‘libnative.so’);
var nativeFuncAddr = libnative.getExportByName(‘nativeMethodName’);

// 定义NativeFunction结构体以匹配原生函数原型
var nativeFunc = new NativeFunction(
nativeFuncAddr,
‘int’, // 返回类型
[‘int’, ‘string’] // 参数类型列表
);

// 准备参数
var arg1 = 123;
var arg2 = Memory.allocUtf8String(‘来自Frida的消息’);

// 主动调用Native函数
var nativeResult = nativeFunc(arg1, arg2);
console.log('JNI/Native函数调用结果: ', nativeResult);

// 对于非JNI接口的.so库内部函数调用,原理相同,只需确保获取正确的函数地址和参数类型即可。
总结来说,Frida提供了一种灵活的方式来Hook和调用应用程序在不同层面的函数,这对于逆向工程、安全测试等领域具有很高的实用价值。在实际操作中,请务必根据目标函数的实际签名和环境进行适当调整。

相关文章:

Frida实战:Java、Native、SO层面的Hook与主动调用详解

引言 Frida是一款强大的动态代码插桩工具&#xff0c;支持对Android和iOS应用进行实时调试和注入。本文将通过实例详细解析如何在Frida中实现对Java层、Native层&#xff08;JNI&#xff09;以及.so库内函数的Hook与主动调用。 一、Hook Java层函数 首先&#xff0c;我们展示…...

Codeforces Round 883 (Div. 3)(集训队加训1)

A.如果钉子与地面距离大于绳子的长度就必须剪 #include<bits/stdc.h> #define eps 1e-5 #define INF 1e9 using namespace std; typedef long long ll; const int N 2e6 9; int a[N],b[N],cl[N]; void Lan(){int n;cin>>n;for(int i1;i<n;i){cin>>a[i]…...

自封装 bind 方法(二)

因为 bind 的使用方法是 某函数.bind(某对象&#xff0c;...剩余参数) 所以需要在 Function.prototype 上进行编程将传递的参数中的某对象和剩余参数使用 apply 的方式在一个回调函数中执行即可要在第一层获取到被绑定函数的 this&#xff0c;因为要拿到那个函数用 apply /***…...

vcomp140.dll丢失如何修复,5种修复方法轻松搞定vcomp140.dll问题

vcomp140.dll文件的丢失可能会引发一系列系统运行与软件功能上的问题。具体来说&#xff0c;这个动态链接库文件是Visual C Redistributable的一部分&#xff0c;对于许多基于此环境开发的应用程序至关重要。一旦缺失&#xff0c;可能会导致部分应用程序无法正常启动或运行&…...

计算机视觉(Computer Vision)和机器视觉(Machine Vision)

举例说明计算机视觉&#xff08;CV&#xff09;技术的优势和挑战 计算机视觉&#xff08;CV&#xff09;技术是一种使用计算机科学和机器学习方法来解释、分析和理解图像和视频的技术。它的优势和挑战如下&#xff1a; 优势&#xff1a; 高效性&#xff1a;CV技术可以快速处…...

国内用ChatGPT可以吗

PS: 无限次数&#xff0c;无需魔法&#xff0c;登录即可使用,网页打开下面 tj4.mnsfdx.net 点击跳转链接 国内用ChatGPT可以吗&#xff1f;简单来说&#xff0c;是可以的&#xff0c;国内可以使用ChatGPT。ChatGPT是一款实体机器翻译工具&#xff0c;也是一种人工智能技术&…...

数据分析-Pandas两种分组箱线图比较

数据分析-Pandas两种分组箱线图比较 数据分析和处理中&#xff0c;难免会遇到各种数据&#xff0c;那么数据呈现怎样的规律呢&#xff1f;不管金融数据&#xff0c;风控数据&#xff0c;营销数据等等&#xff0c;莫不如此。如何通过图示展示数据的规律&#xff1f; 数据表&am…...

Mac版2024 CleanMyMac X 4.14.6 核心功能详解以及永久下载和激活入口

CleanMyMac 是 macOS 上久负盛名的系统清理工具&#xff0c;2018 年&#xff0c;里程碑式版本 CleanMyMac X 正式发布。不仅仅是命名上的变化&#xff0c;焕然一新的 UI、流畅的动画也让它显得更加精致。新增的系统优化、软件更新等功能&#xff0c;使得在日常使用 macOS 时有了…...

Java引用传递及基本应用

在 Java 中&#xff0c;传递参数的方式主要有两种&#xff1a;值传递&#xff08;传递的是对象的引用值&#xff09;和引用传递。本教程将重点介绍 Java 中的引用传递以及其基本应用。 1. 引用传递概念 在 Java 中&#xff0c;所有的方法参数都是通过值传递的。对于对象类型的…...

低代码测试自动化

每个企业都希望将产品快速推向市场。虽然低代码无代码测试自动化可以帮助组织实现这一目标&#xff0c;但测试人员必须牢记几件事&#xff0c;才能通过低代码无代码来推进他们的组织。 低代码测试自动化的重要性是什么&#xff1f; 低代码测试自动化加速了测试生命周期。借助简…...

Linux 文件操作命令

1 文件与目录操作 cd /home 进入 ‘/home’ 目录 cd .. 返回上一级目录cd ../.. 返回上两级目录cd - 返回上次所在目录cp file1 file2 将file1复制为file2cp -a dir1 dir2 复制一个目录 cp -a /tmp/dir1 . 复制一个…...

机器学习-面经(part8、贝叶斯和其他知识点)

机器学习面经其他系列 机器学习面经系列的其他部分如下所示&#xff1a; 机器学习-面经(part1)-初步说明 机器学习-面经(part2)-交叉验证、超参数优化、评价指标等内容 机器学习-面经(part3)-正则化、特征工程面试问题与解答合集机器学习-面经(part4)-决策树共5000字的面试问…...

图数据库 之 Neo4j - 应用场景3 - 知识图谱(8)

背景 知识图谱的复杂性:知识图谱通常包含大量的实体、关系和属性,以及它们之间的复杂关联。传统的关系型数据库在处理这种复杂性时可能面临性能和灵活性的挑战。 图数据库的优势:图数据库是一种专门用于存储和处理图结构数据的数据库。它们使用节点和边来表示实体和关系,并…...

redis 性能优化三

前言 如果Redis 没有执行大量的慢查询,同时也没有删除大量的过期的keys&#xff0c;那么我们该怎么办呢&#xff1f;那么我们是不是就应该关注影响性能的其他机制了&#xff0c;也就是文件系统和操作系统了。 Redis 会把数据持久化到磁盘&#xff0c;这个过程依赖文件系统来完…...

Python用Tkinter实现圆的半径 面积 周长 知一求二程序

Python用Tkinter实现圆的半径 面积 周长 知一求二程序 import tkinter as tk from tkinter import messagebox from tkinter import *app tk.Tk() app.title(圆的半径 面积 周长 知一求二程序) app.geometry(425x125)label1 tk.Label(app, text"半径") label2 tk.…...

电源环路补偿的目标是避免产生正反馈

在一般的认识中&#xff0c;进行电源环路设计的目的是保证电源输出端的电压稳定&#xff0c;在误差信号传入系统时&#xff0c;系统进行负反馈调节&#xff0c;矫正干扰信号带来的误差量。 那么&#xff0c;为什么要设置成这样&#xff0c;不稳定会有什么后果等等&#xff0c;…...

SSM+MySQL替换探索 openGauss对比postgresql12

SSM 介绍 SSM&#xff08;SpringSpringMVCMyBatis&#xff09;框架集由 Spring、MyBatis 两个开源框架整合而成&#xff08;SpringMVC 是 Spring 中的部分内容&#xff09;&#xff0c;常作为数据源较简单的 web 项目的框架。 Spring Spring 就像是整个项目中装配 bean 的大…...

XGboost的整理

XGboost&#xff08;extreme gradient boosting&#xff09;:高效实现了GBDT算法并进行了算法和工程上的许多改进。 XGboost的思路&#xff1a; 目标&#xff1a;建立k个回归树&#xff0c;使得树群的预测尽量接近真实值&#xff08;准确率&#xff09;而且有尽量大的泛化能力…...

java入门基础学习导览

本篇文章会持续更新直到更新完毕&#xff0c;关注博主不迷路~&#xff08;如果没有超链接&#xff0c;表示还没有更新到&#xff09; 一 JAVA语言基础 二 流程控制 三 数组 字符串 与正则表达式 四 JAVA面向对象编程 五 JAVA 异常处理 六 JAVA输入输出 七 泛型与容器类 …...

网工内推 | 上市公司售前,大专以上即可,最高15K*13薪,补贴多

01 北京神州新桥科技有限公司 招聘岗位&#xff1a;售前工程师 职责描述&#xff1a; 1、完成项目的售前技术支持工作&#xff1b; 2、 配合销售进行新产品及解决方案的推广工作&#xff1b; 3、 配合销售完成用户的售前技术交流方案准备、现场技术交流、技术方案宣讲等工作…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...