Frida实战:Java、Native、SO层面的Hook与主动调用详解
引言
Frida是一款强大的动态代码插桩工具,支持对Android和iOS应用进行实时调试和注入。本文将通过实例详细解析如何在Frida中实现对Java层、Native层(JNI)以及.so库内函数的Hook与主动调用。
一、Hook Java层函数
首先,我们展示如何使用Frida Hook Java层的方法:
Javascript
// 引入Frida的Java API
Java.perform(function () {
// 获取待Hook的目标类
var targetClass = Java.use(‘com.example.target.ClassName’);
// 定义要Hook的方法
targetClass.methodToHook.implementation = function (...args) {console.log("成功Hook到Java方法: " + this.toString());console.log("方法参数: ", args);// 调用原始方法var originalResult = this.methodToHook.apply(this, args);// 在原始方法执行后添加自定义逻辑console.log("方法返回值: ", originalResult);return originalResult;
};
});
二、Hook Native层(JNI)函数
接下来,我们演示如何Hook JNI/Native层的函数:
Javascript
// 获取目标so库模块
var libtarget = Module.findExportByName(‘libnative.so’, ‘native_function’);
// 定义Hook逻辑
Interceptor.attach(libtarget, {
onEnter: function (args) {
console.log("成功Hook到Native函数: " + this.name);
// 输出传入参数for (var i = 0; i < args.length; i++) {console.log("参数 " + i + ": 0x" + args[i].toString(16));}
},
onLeave(retval) {// 输出返回值console.log("函数返回值: 0x" + retval.toString(16));// 如需修改返回值,可在此处进行// retval.replace(newValue);
}
});
三、主动调用Java层函数
在Frida中主动调用Java方法如下:
Javascript
Java.perform(function () {
// 获取目标类并创建实例(如适用)
var targetClass = Java.use(‘com.example.target.ClassName’);
var instance = targetClass.$new();
// 定义要调用的方法名及其参数
var methodName = 'methodToCall';
var methodArgs = [param1, param2]; // 根据实际参数填入// 主动调用Java方法
var result = instance[methodName].apply(instance, methodArgs);
console.log("Java方法调用结果: ", result);
});
// 静态方法调用示例
Java.use(‘com.example.target.StaticMethods’).staticMethodToCall(param);
四、主动调用JNI/Native层函数与.so库内部函数
对于JNI/Native函数以及.so库内部函数的主动调用,可通过创建NativeFunction对象实现:
Javascript
// 获取so库模块并找到函数地址
var libnative = Process.getModuleByName(‘libnative.so’);
var nativeFuncAddr = libnative.getExportByName(‘nativeMethodName’);
// 定义NativeFunction结构体以匹配原生函数原型
var nativeFunc = new NativeFunction(
nativeFuncAddr,
‘int’, // 返回类型
[‘int’, ‘string’] // 参数类型列表
);
// 准备参数
var arg1 = 123;
var arg2 = Memory.allocUtf8String(‘来自Frida的消息’);
// 主动调用Native函数
var nativeResult = nativeFunc(arg1, arg2);
console.log('JNI/Native函数调用结果: ', nativeResult);
// 对于非JNI接口的.so库内部函数调用,原理相同,只需确保获取正确的函数地址和参数类型即可。
总结来说,Frida提供了一种灵活的方式来Hook和调用应用程序在不同层面的函数,这对于逆向工程、安全测试等领域具有很高的实用价值。在实际操作中,请务必根据目标函数的实际签名和环境进行适当调整。
相关文章:
Frida实战:Java、Native、SO层面的Hook与主动调用详解
引言 Frida是一款强大的动态代码插桩工具,支持对Android和iOS应用进行实时调试和注入。本文将通过实例详细解析如何在Frida中实现对Java层、Native层(JNI)以及.so库内函数的Hook与主动调用。 一、Hook Java层函数 首先,我们展示…...
Codeforces Round 883 (Div. 3)(集训队加训1)
A.如果钉子与地面距离大于绳子的长度就必须剪 #include<bits/stdc.h> #define eps 1e-5 #define INF 1e9 using namespace std; typedef long long ll; const int N 2e6 9; int a[N],b[N],cl[N]; void Lan(){int n;cin>>n;for(int i1;i<n;i){cin>>a[i]…...
自封装 bind 方法(二)
因为 bind 的使用方法是 某函数.bind(某对象,...剩余参数) 所以需要在 Function.prototype 上进行编程将传递的参数中的某对象和剩余参数使用 apply 的方式在一个回调函数中执行即可要在第一层获取到被绑定函数的 this,因为要拿到那个函数用 apply /***…...

vcomp140.dll丢失如何修复,5种修复方法轻松搞定vcomp140.dll问题
vcomp140.dll文件的丢失可能会引发一系列系统运行与软件功能上的问题。具体来说,这个动态链接库文件是Visual C Redistributable的一部分,对于许多基于此环境开发的应用程序至关重要。一旦缺失,可能会导致部分应用程序无法正常启动或运行&…...
计算机视觉(Computer Vision)和机器视觉(Machine Vision)
举例说明计算机视觉(CV)技术的优势和挑战 计算机视觉(CV)技术是一种使用计算机科学和机器学习方法来解释、分析和理解图像和视频的技术。它的优势和挑战如下: 优势: 高效性:CV技术可以快速处…...
国内用ChatGPT可以吗
PS: 无限次数,无需魔法,登录即可使用,网页打开下面 tj4.mnsfdx.net 点击跳转链接 国内用ChatGPT可以吗?简单来说,是可以的,国内可以使用ChatGPT。ChatGPT是一款实体机器翻译工具,也是一种人工智能技术&…...

数据分析-Pandas两种分组箱线图比较
数据分析-Pandas两种分组箱线图比较 数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律? 数据表&am…...

Mac版2024 CleanMyMac X 4.14.6 核心功能详解以及永久下载和激活入口
CleanMyMac 是 macOS 上久负盛名的系统清理工具,2018 年,里程碑式版本 CleanMyMac X 正式发布。不仅仅是命名上的变化,焕然一新的 UI、流畅的动画也让它显得更加精致。新增的系统优化、软件更新等功能,使得在日常使用 macOS 时有了…...

Java引用传递及基本应用
在 Java 中,传递参数的方式主要有两种:值传递(传递的是对象的引用值)和引用传递。本教程将重点介绍 Java 中的引用传递以及其基本应用。 1. 引用传递概念 在 Java 中,所有的方法参数都是通过值传递的。对于对象类型的…...
低代码测试自动化
每个企业都希望将产品快速推向市场。虽然低代码无代码测试自动化可以帮助组织实现这一目标,但测试人员必须牢记几件事,才能通过低代码无代码来推进他们的组织。 低代码测试自动化的重要性是什么? 低代码测试自动化加速了测试生命周期。借助简…...

Linux 文件操作命令
1 文件与目录操作 cd /home 进入 ‘/home’ 目录 cd .. 返回上一级目录cd ../.. 返回上两级目录cd - 返回上次所在目录cp file1 file2 将file1复制为file2cp -a dir1 dir2 复制一个目录 cp -a /tmp/dir1 . 复制一个…...

机器学习-面经(part8、贝叶斯和其他知识点)
机器学习面经其他系列 机器学习面经系列的其他部分如下所示: 机器学习-面经(part1)-初步说明 机器学习-面经(part2)-交叉验证、超参数优化、评价指标等内容 机器学习-面经(part3)-正则化、特征工程面试问题与解答合集机器学习-面经(part4)-决策树共5000字的面试问…...
图数据库 之 Neo4j - 应用场景3 - 知识图谱(8)
背景 知识图谱的复杂性:知识图谱通常包含大量的实体、关系和属性,以及它们之间的复杂关联。传统的关系型数据库在处理这种复杂性时可能面临性能和灵活性的挑战。 图数据库的优势:图数据库是一种专门用于存储和处理图结构数据的数据库。它们使用节点和边来表示实体和关系,并…...
redis 性能优化三
前言 如果Redis 没有执行大量的慢查询,同时也没有删除大量的过期的keys,那么我们该怎么办呢?那么我们是不是就应该关注影响性能的其他机制了,也就是文件系统和操作系统了。 Redis 会把数据持久化到磁盘,这个过程依赖文件系统来完…...
Python用Tkinter实现圆的半径 面积 周长 知一求二程序
Python用Tkinter实现圆的半径 面积 周长 知一求二程序 import tkinter as tk from tkinter import messagebox from tkinter import *app tk.Tk() app.title(圆的半径 面积 周长 知一求二程序) app.geometry(425x125)label1 tk.Label(app, text"半径") label2 tk.…...
电源环路补偿的目标是避免产生正反馈
在一般的认识中,进行电源环路设计的目的是保证电源输出端的电压稳定,在误差信号传入系统时,系统进行负反馈调节,矫正干扰信号带来的误差量。 那么,为什么要设置成这样,不稳定会有什么后果等等,…...
SSM+MySQL替换探索 openGauss对比postgresql12
SSM 介绍 SSM(SpringSpringMVCMyBatis)框架集由 Spring、MyBatis 两个开源框架整合而成(SpringMVC 是 Spring 中的部分内容),常作为数据源较简单的 web 项目的框架。 Spring Spring 就像是整个项目中装配 bean 的大…...
XGboost的整理
XGboost(extreme gradient boosting):高效实现了GBDT算法并进行了算法和工程上的许多改进。 XGboost的思路: 目标:建立k个回归树,使得树群的预测尽量接近真实值(准确率)而且有尽量大的泛化能力…...
java入门基础学习导览
本篇文章会持续更新直到更新完毕,关注博主不迷路~(如果没有超链接,表示还没有更新到) 一 JAVA语言基础 二 流程控制 三 数组 字符串 与正则表达式 四 JAVA面向对象编程 五 JAVA 异常处理 六 JAVA输入输出 七 泛型与容器类 …...

网工内推 | 上市公司售前,大专以上即可,最高15K*13薪,补贴多
01 北京神州新桥科技有限公司 招聘岗位:售前工程师 职责描述: 1、完成项目的售前技术支持工作; 2、 配合销售进行新产品及解决方案的推广工作; 3、 配合销售完成用户的售前技术交流方案准备、现场技术交流、技术方案宣讲等工作…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...