【排序算法】推排序算法解析:从原理到实现
目录
1. 引言
2. 推排序算法原理
3. 推排序的时间复杂度分析
4. 推排序的应用场景
5. 推排序的优缺点分析
5.1 优点:
5.2 缺点:
6. Java、JavaScript 和 Python 实现推排序算法
6.1 Java 实现:
6.2 JavaScript 实现:
6.3 Python 实现:
7. 总结
1. 引言
推排序(Heap Sort)是一种高效的排序算法,其核心思想是利用堆数据结构进行排序。本文将从原理、时间复杂度、应用场景、优缺点等方面深入探讨推排序算法,并通过 Java、JavaScript 和 Python 三种编程语言的示例进行说明。

2. 推排序算法原理
推排序算法的核心思想是利用堆数据结构进行排序。在推排序中,首先将待排序序列构建成一个最大堆或最小堆,然后进行堆排序,每次取出堆顶元素,再调整剩余元素的堆结构,直到所有元素都被取出,即完成排序。
推排序的步骤如下:
- 构建堆:将待排序序列构建成一个最大堆或最小堆。
- 堆排序:重复从堆顶取出元素,调整剩余元素的堆结构,直到所有元素都被取出,即完成排序。

3. 推排序的时间复杂度分析
推排序算法的时间复杂度取决于构建堆和堆排序两个步骤。在构建堆的过程中,需要对序列中的每个元素进行上浮或下沉操作,时间复杂度为O(n);在堆排序的过程中,需要执行n次堆调整操作,时间复杂度为O(n log n)。因此,推排序的总时间复杂度为O(n log n)。

4. 推排序的应用场景
推排序算法适用于各种数据类型和数据规模的排序问题,特别适合处理大规模数据。由于推排序的时间复杂度较低,因此在需要高效率排序的场景下广泛应用。

5. 推排序的优缺点分析
5.1 优点:
- 时间复杂度低:推排序的时间复杂度为O(n log n),效率较高。
- 稳定性:推排序是一种稳定的排序算法,相同元素的相对位置不会改变。
- 适用性广泛:推排序适用于各种数据类型和数据规模,特别适合处理大规模数据。
5.2 缺点:
- 需要额外的空间:推排序需要额外的空间来存储堆结构,因此在内存有限的情况下可能会受到限制。
- 不适合小规模数据:推排序在处理小规模数据时可能效率较低,因为堆的构建需要较多的比较和交换操作。

6. Java、JavaScript 和 Python 实现推排序算法
6.1 Java 实现:
import java.util.Arrays;public class HeapSort {public static void heapSort(int[] arr) {int n = arr.length;// Build heap (rearrange array)for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);// One by one extract an element from heapfor (int i = n - 1; i > 0; i--) {// Move current root to endint temp = arr[0];arr[0] = arr[i];arr[i] = temp;// call max heapify on the reduced heapheapify(arr, i, 0);}}// To heapify a subtree rooted with node i which is// an index in arr[]. n is size of heappublic static void heapify(int[] arr, int n, int i) {int largest = i; // Initialize largest as rootint left = 2 * i + 1; // left = 2*i + 1int right = 2 * i + 2; // right = 2*i + 2// If left child is larger than rootif (left < n && arr[left] > arr[largest])largest = left;// If right child is larger than largest so farif (right < n && arr[right] > arr[largest])largest = right;// If largest is not rootif (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;// Recursively heapify the affected sub-treeheapify(arr, n, largest);}}public static void main(String[] args) {int[] arr = {12, 11, 13, 5, 6, 7};heapSort(arr);System.out.println("Sorted array: " + Arrays.toString(arr));}
}
6.2 JavaScript 实现:
function heapSort(arr) {let n = arr.length;// Build heap (rearrange array)for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {heapify(arr, n, i);}// One by one extract an element from heapfor (let i = n - 1; i > 0; i--) {// Move current root to endlet temp = arr[0];arr[0] = arr[i];arr[i] = temp;// call max heapify on the reduced heapheapify(arr, i, 0);}
}// To heapify a subtree rooted with node i which is
// an index in arr[]. n is size of heap
function heapify(arr, n, i) {let largest = i; // Initialize largest as rootlet left = 2 * i + 1; // left = 2*i + 1let right = 2 * i + 2; // right = 2*i + 2// If left child is larger than rootif (left < n && arr[left] > arr[largest]) {largest = left;}// If right child is larger than largest so farif (right < n && arr[right] > arr[largest]) {largest = right;}// If largest is not root
6.3 Python 实现:
def heapify(arr, n, i):largest = i # Initialize largest as rootleft = 2 * i + 1 # left = 2*i + 1right = 2 * i + 2 # right = 2*i + 2# If left child is larger than rootif left < n and arr[left] > arr[largest]:largest = left# If right child is larger than largest so farif right < n and arr[right] > arr[largest]:largest = right# If largest is not rootif largest != i:arr[i], arr[largest] = arr[largest], arr[i] # Swap# Recursively heapify the affected sub-treeheapify(arr, n, largest)def heapSort(arr):n = len(arr)# Build a maxheap.for i in range(n // 2 - 1, -1, -1):heapify(arr, n, i)# One by one extract elementsfor i in range(n - 1, 0, -1):arr[i], arr[0] = arr[0], arr[i] # Swapheapify(arr, i, 0)arr = [12, 11, 13, 5, 6, 7]
heapSort(arr)
print("Sorted array:", arr)
7. 总结
通过本文的介绍,我们对推排序算法有了更深入的理解。从原理到实现,再到时间复杂度分析、应用场景、优缺点等方面,我们对推排序算法有了全面的认识。同时,通过用 Java、JavaScript 和 Python 三种编程语言实现推排序算法,我们加深了对这些语言特性和语法的理解,提高了编程能力。
推排序算法是一种高效的排序算法,在处理大规模数据时表现良好。它适用于各种数据类型和数据规模的排序问题,特别适合处理大规模数据。
希望本文能够帮助读者更好地理解推排序算法,并在实践中灵活运用,解决实际问题。同时也希望读者能够继续深入学习和探索,不断提升自己的算法能力和编程技术。

相关文章:
【排序算法】推排序算法解析:从原理到实现
目录 1. 引言 2. 推排序算法原理 3. 推排序的时间复杂度分析 4. 推排序的应用场景 5. 推排序的优缺点分析 5.1 优点: 5.2 缺点: 6. Java、JavaScript 和 Python 实现推排序算法 6.1 Java 实现: 6.2 JavaScript 实现: 6.…...
Python爬虫实战(基础篇)—13获取《人民网》【最新】【国内】【国际】写入Word(附完整代码)
文章目录 专栏导读背景测试代码分析请求网址请求参数代码测试数据分析利用lxml+xpath进一步分析将获取链接再获取文章内容测试代码写入word完整代码总结专栏导读 🔥🔥本文已收录于《Python基础篇爬虫》 🉑🉑本专栏专门针对于有爬虫基础准备的一套基础教学,轻松掌握Py…...
常见控件应用
常见控件应用 1.操作Ajax选项2.滑动滑块操作 1.操作Ajax选项 Ajax即Asynchronous JavaScript and XML(异步JavaScript和XML),是指一种创建交互式、快速动态网页应用的网页开发技术。通过在后台与服务器进行少量数据交换,Ajax可以…...
什么是降压恒流芯片?它有什么作用?
降压恒流芯片是一种电子元件,用于将高电压或高电流的输入电源转换为稳定的低电压输出电源,并同时保持恒定的电流输出。 降压恒流芯片的作用有以下几点: 将高电压降低到适合驱动车灯的工作电压,确保车灯亮度稳定。 在负载变化时…...
14:00面试,15:00就出来了,问的问题过于变态了。。。
从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到2月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40%…...
Maven的settings.xml配置
maven的两大配置文件:settings.xml和pom.xml。其中settings.xml是maven的全局配置文件,pom.xml则是文件所在项目的局部配置 标签servers: 一般,仓库的下载和部署是在pom.xml文件中的repositories和distributionManagement元素中定…...
利用redis实现秒杀功能
6、秒杀优化 这个是 图灵 的redis实战里面的一个案例 6.1 秒杀优化-异步秒杀思路 我们来回顾一下下单流程 当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤…...
vscode 使用ssh进行远程开发 (remote-ssh),首次连接及后续使用,详细介绍
在vscode添加remote ssh插件 首次连接 选择左侧栏的扩展,并搜索remote ssh 它大概长这样,点击安装 安装成功后,在左侧栏会出现远程连接的图标,点击后选择ssh旁加号便可以进行连接。 安装成功后vscode左下角会有一个图标 点击图…...
rabbitmq总结
一、初次感知 https://www.cnblogs.com/zqyx/p/13170881.html 这篇文章非常好,讲了一些持久化的原理。 1. 第一次使用rabbitmq发信息 // 创建连接工厂ConnectionFactory connectionFactorynew ConnectionFactory();connectionFactory.setHost("192.168.88.1…...
专利预审是什么
专利预审是一种专利申请流程中的前置审查服务,通常由国家知识产权局设立的各地方知识产权保护中心或其他指定机构提供。在正式提交专利申请至国家知识产权局之前,申请人可以通过专利预审机制,提前向预审机构提交专利申请资料,由预…...
淘宝商品详情数据丨商品搬家丨商品采集丨商城建站
淘宝商品详情数据、商品搬家、商品采集以及商城建站都是电子商务领域的重要环节,它们共同构成了一个完整的在线销售体系。下面我将分别对这几个概念进行详细的解释。 请求示例,API接口接入Anzexi58 一、淘宝商品详情数据 淘宝商品详情数据指的是在淘宝…...
redis(1)-key-value-基本概念
1. 全量IO 全局遍历 2.路由、索引、映射 3.文件里都是小格子,4KB 硬件水平的吞吐。 数据:索引 100:1 4.Mysql qps:90000 tps:5000 事务 1个事务 18 tps*18qps 1.安全 2.事务 3.持久化 4.淘汰 5.过期 定时:内存-mysql 一天…...
cocos creator 3.7.2使用shader实现图片扫光特效
简介 功能:图片实现扫光效果 引擎:cocos Creator 3.7.2 开发语言:ts 完整版链接 链接https://lengmo714.top/284d90f4.html 效果图 shader代码 // Copyright (c) 2017-2020 Xiamen Yaji Software Co., Ltd. CCEffect %{techniques:- pas…...
【C++杂货铺】详解string
目录 🌈前言🌈 📁 为什么学习string 📁 认识string(了解) 📁 string的常用接口 📂 构造函数 📂 string类对象的容量操作 📂 string类对象的访问以及遍历操…...
算法刷题day20:二分
目录 引言概念一、借教室二、分巧克力三、管道四、技能升级五、冶炼金属六、数的范围七、最佳牛围栏八、套餐设计九、牛的学术圈I十、我在哪? 引言 这几天一直在做二分的题,都是上了难度的题目,本来以为自己的二分水平已经非常熟悉了&#x…...
【Spring云原生】Spring Batch:海量数据高并发任务处理!数据处理纵享新丝滑!事务管理机制+并行处理+实例应用讲解
🎉🎉欢迎光临🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟特别推荐给大家我的最新专栏《Spring 狂野之旅:从入门到入魔》 🚀 本…...
docker ubuntu20.04 安装教程
ubuntu20.04 安装 docker 教程 本博客测试安装时间2023.8月 一、docker安装内容:docker Engine社区版 和 docker Compose 二、安装环境:ubuntu20.04 三、安装步骤: # 如果已经安装过docker,请先卸载,没安装则跳过…...
防御保护----IPSEC VPPN实验
实验拓扑: 实验背景:FW1和FW2是双机热备的状态。 实验要求:在FW和FW3之间建立一条IPSEC通道,保证10.0.2.0/24网段可以正常访问到192.168.1.0/24 IPSEC VPPN实验配置(由于是双机热备状态,所以FW1和FW2只需要…...
音视频数字化(视频线缆与接口)
目录 1、DVI接口 2、DP接口 之前的文章【音视频数字化(线缆与接口)】提到了部分视频线缆,今天再补充几个。 视频模拟信号连接从莲花头的“复合”线开始,经历了S端子、色差分量接口,通过亮度、色度尽量分离的办法提高画面质量,到VGA已经到了模拟的顶峰,实现了RGB的独立…...
爬虫实战——巴黎圣母院新闻【内附超详细教程,你上你也行】
文章目录 发现宝藏一、 目标二、简单分析网页1. 寻找所有新闻2. 分析模块、版面和文章 三、爬取新闻1. 爬取模块2. 爬取版面3. 爬取文章 四、完整代码五、效果展示 发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
