当前位置: 首页 > news >正文

微分学<4>——微分中值定理

索引

  • 微分中值定理
    • 极值
      • 定义4.1 极大(小)值
      • 定理4.1 Fermat引理
      • 定理4.2 Rolle定理
    • Lagrange中值定理
      • 定理4.3 Lagrange中值定理
      • 定理4.4 Cauchy中值定理
    • 导数对函数性质的刻画
    • Jensen不等式

微分中值定理

极值

定义4.1 极大(小)值

若存在 x 0 x_{0} x0的邻域 U ( x 0 , δ ) U\left ( x_{0}, \delta \right ) U(x0,δ),使得 ∀ x ∈ U ( x 0 ) , δ \forall x\in U\left ( x_{0}\right), \delta xU(x0),δ, f ( x ) ≤ f ( x 0 ) f\left(x\right ) \le f\left(x_{0}\right ) f(x)f(x0),则称 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点。
若存在 x 0 x_{0} x0的邻域 U ( x 0 , δ ) U\left ( x_{0}, \delta \right ) U(x0,δ),使得 ∀ x ∈ U ( x 0 ) , δ \forall x\in U\left ( x_{0}\right), \delta xU(x0),δ, f ( x ) ≥ f ( x 0 ) f\left(x\right ) \ge f\left(x_{0}\right ) f(x)f(x0),则称 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极小值点。

定理4.1 Fermat引理

x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极值点,且函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处可导,则 f ′ ( x 0 ) = 0 f^{\prime }\left ( x_{0} \right )=0 f(x0)=0

不妨设 x 0 x_{0} x0是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点。
Δ x ∈ ( 0 , δ ) \Delta x\in \left ( 0,\delta \right ) Δx(0,δ),则 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≤ 0 \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x} \le 0 Δxf(x0+Δx)f(x0)0,
根据函数极限的保不等号性, f + ′ ( x 0 ) = lim ⁡ x 0 + → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≤ 0 f^{\prime } _{+}\left ( x_{0} \right ) =\lim_{x_{0}^{+} \to 0} \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x}\le 0 f+(x0)=limx0+0Δxf(x0+Δx)f(x0)0;
同理令 Δ x ∈ ( − δ , 0 ) \Delta x\in \left ( -\delta,0 \right ) Δx(δ,0),则 f − ′ ( x 0 ) = lim ⁡ x 0 − → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x ≥ 0 f^{\prime } _{-}\left ( x_{0} \right ) =\lim_{x_{0}^{-} \to 0} \frac{f\left ( x_{0}+\Delta x \right )-f\left ( x_{0} \right ) }{\Delta x}\ge 0 f(x0)=limx00Δxf(x0+Δx)f(x0)0,
因为函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0处可导,所以函数 f ( x ) f\left(x\right ) f(x)在点 x 0 x_{0} x0 f + ′ ( x 0 ) = f − ′ ( x 0 ) = f ′ ( x 0 ) = 0 f^{\prime } _{+}\left ( x_{0} \right ) =f^{\prime } _{-}\left ( x_{0} \right ) =f^{\prime }\left ( x_{0} \right )=0 f+(x0)=f(x0)=f(x0)=0

定理4.2 Rolle定理

函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导, f ( a ) = f ( b ) f\left ( a \right )=f\left ( b \right ) f(a)=f(b),则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f(ξ)=0

根据最值定理, f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上必有最大值 M M M和最小值 m m m,也就是 ∃ η \exists \eta η, ξ ∈ [ a , b ] \xi \in \left [ a,b \right ] ξ[a,b]: ∀ x ∈ [ a , b ] \forall x\in \left [ a,b \right ] x[a,b], f ( η ) = m = min ⁡ f ( x ) f\left ( \eta \right )=m= \min f\left ( x \right ) f(η)=m=minf(x), f ( ξ ) = M = max ⁡ f ( x ) f\left ( \xi \right )=M=\max f\left ( x \right ) f(ξ)=M=maxf(x)
不妨设函数 f ( x ) f\left ( x \right ) f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上有最大值 M = f ( ξ ) M=f\left ( \xi \right ) M=f(ξ)
<1> M = f ( a ) ( = f ( b ) ) M=f\left ( a \right )(=f\left ( b \right )) M=f(a)(=f(b))
此时函数 f ( x ) f\left ( x \right ) f(x)为常数函数,显然 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f(ξ)=0
<2> M ≠ f ( a ) ( = f ( b ) ) M\neq f\left ( a \right )(=f\left ( b \right )) M=f(a)(=f(b))
此时 M = f ( ξ ) M=f\left ( \xi \right ) M=f(ξ) f ( x ) f\left ( x \right ) f(x) [ a , b ] \left [ a,b \right ] [a,b]上的一个极大值, ξ \xi ξ是函数 f ( x ) f\left(x\right ) f(x)的一个极大值点,
根据Fermat引理, f ′ ( ξ ) = 0 f^{\prime }\left ( \xi \right )=0 f(ξ)=0

Lagrange中值定理

定理4.3 Lagrange中值定理

函数 y = f ( x ) y=f\left ( x \right ) y=f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) = f ( b ) − f ( a ) b − a f^{\prime } \left ( \xi \right )=\frac{f\left ( b\right ) -f\left ( a \right ) }{b-a} f(ξ)=baf(b)f(a)

任取 t ∈ ( a , b ) t \in \left ( a,b \right ) t(a,b), x = t x=t x=t处切线斜率为 f ′ ( t ) f^{\prime } \left ( t \right ) f(t)
另外连接闭区间 [ a , b ] \left [ a,b \right ] [a,b]端点的割线斜率为 k = f ( b ) − f ( a ) b − a k=\frac{f\left ( b \right )-f\left ( a \right ) }{b-a} k=baf(b)f(a),割线方程为 y − f ( a ) = ( f ( b ) − f ( a ) b − a ) ( x − a ) y-f\left ( a \right )=\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{b-a} \right )\left ( x-a \right ) yf(a)=(baf(b)f(a))(xa),
而点 ( t , f ( t ) ) \left (t ,f\left (t \right ) \right ) (t,f(t))到割线 y = ( f ( b ) − f ( a ) b − a ) ( x − a ) y=\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{b-a} \right )\left ( x-a \right ) y=(baf(b)f(a))(xa)的距离函数为 d ( t ) = ∣ k ( t − a ) + f ( a ) − f ( t ) ∣ 1 + k 2 d\left ( t \right )=\frac{\left | k\left ( t-a \right )+f\left ( a \right ) -f\left ( t \right )\right | }{\sqrt{1+k^{2} } } d(t)=1+k2 k(ta)+f(a)f(t), d ′ ( t ) = ∣ k − f ′ ( t ) ∣ 1 + k 2 d^{\prime } \left ( t \right ) =\frac{\left | k-f^{\prime } \left ( t \right ) \right | }{\sqrt{1+k^{2} } } d(t)=1+k2 kf(t),
因为 d ( t ) d\left ( t \right ) d(t)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,且 d ( a ) = d ( b ) = 0 d \left ( a \right )= d \left ( b \right )=0 d(a)=d(b)=0,所以根据Rolle定理, ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): d ′ ( ξ ) = 0 d^{\prime }\left ( \xi \right )=0 d(ξ)=0,
解方程 d ′ ( ξ ) = ∣ k − f ′ ( ξ ) ∣ 1 + k 2 = 0 d^{\prime }\left ( \xi \right )=\frac{\left | k-f^{\prime } \left ( \xi \right ) \right | }{\sqrt{1+k^{2} } }=0 d(ξ)=1+k2 kf(ξ)=0,可得 f ′ ( ξ ) = k = f ( b ) − f ( a ) b − a f^{\prime } \left ( \xi \right ) =k=\frac{f\left ( b \right )-f\left ( a \right ) }{b-a} f(ξ)=k=baf(b)f(a)
从几何意义出发,同样根据距离函数 d ( t ) d\left ( t \right ) d(t)的分子部分,可以构造函数 φ ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) = f ( x ) − f ( a ) − k ( x − a ) \varphi \left ( x \right )=f\left ( x \right )-f\left ( a \right )-\frac{f\left ( b \right )-f\left ( a \right ) }{b-a}\left ( x-a \right )= f\left ( x \right )-f\left ( a \right )-k\left ( x-a \right ) φ(x)=f(x)f(a)baf(b)f(a)(xa)=f(x)f(a)k(xa), φ ( x ) \varphi \left ( x \right ) φ(x)仍然满足Rolle定理, ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): φ ′ ( ξ ) = 0 \varphi^{\prime } \left ( \xi \right )=0 φ(ξ)=0,代数方法与几何方法实质上殊途同归。

定理4.4 Cauchy中值定理

函数 y = f ( x ) y=f\left ( x \right ) y=f(x)在闭区间 [ a , b ] \left [ a,b \right ] [a,b]上连续,在开区间 ( a , b ) \left ( a,b \right ) (a,b)上可导,则 ∃ ξ ∈ ( a , b ) \exists \xi \in \left ( a,b \right ) ξ(a,b): f ′ ( ξ ) g ′ ( ξ ) = f ( b ) − f ( a ) g ( b ) − g ( a ) ( g ′ ( ξ ) ≠ 0 ) \frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) }=\frac{f\left ( b \right )-f\left ( a \right ) }{g\left ( b \right )-g\left ( a \right ) }\left ( g^{\prime}\left ( \xi \right ) \neq 0 \right ) g(ξ)f(ξ)=g(b)g(a)f(b)f(a)(g(ξ)=0)

联立参数方程:
{ y = f ( t ) x = g ( t ) \left\{\begin{matrix} y=f\left ( t \right ) \\ x=g\left ( t \right ) \end{matrix}\right. {y=f(t)x=g(t)
参考Lagrange中值定理,可构造函数 φ ( x ) = f ( x ) − f ( a ) − ( f ( b ) − f ( a ) g ( b ) − g ( a ) ) ( g ( x ) − g ( a ) ) \varphi \left ( x \right )=f\left ( x \right )-f\left ( a \right )-\left ( \frac{f\left ( b \right )-f\left ( a \right ) }{g\left ( b \right )-g\left ( a \right ) } \right ) \left ( g\left ( x \right ) -g\left ( a \right ) \right ) φ(x)=f(x)f(a)(g(b)g(a)f(b)f(a))(g(x)g(a)),后续过程与Lagrange中值定理一致。

导数对函数性质的刻画

Jensen不等式

相关文章:

微分学<4>——微分中值定理

索引 微分中值定理极值定义4.1 极大(小)值定理4.1 Fermat引理定理4.2 Rolle定理 Lagrange中值定理定理4.3 Lagrange中值定理定理4.4 Cauchy中值定理 导数对函数性质的刻画Jensen不等式 微分中值定理 极值 定义4.1 极大(小)值 若存在 x 0 x_{0} x0​的邻域 U ( x 0 , δ ) U\…...

FPGA的时钟资源

目录 简介 Clock Region详解 MRCC和SRCC的区别 BUFGs 时钟资源总结 简介 7系列FPGA的时钟结构图&#xff1a; Clock Region&#xff1a;时钟区域&#xff0c;下图中有6个时钟区域&#xff0c;用不同的颜色加以区分出来 Clock Backbone&#xff1a;从名字也能看出来&#x…...

LeetCode27: 移除元素

题目描述 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出…...

Python使用Beautiful Soup及解析html获取元素并提取内容值

Python使用Beautiful Soup及解析html获取元素并提取内容值 1. 包括解析获取标题2. 根据标签及id获取所有元素3. 根据标签及class获取所有元素4. 获取元素下的标签的值5. 获取元素下的parent及child的元素的值参考 1. 包括解析获取标题 2. 根据标签及id获取所有元素 3. 根据标…...

如何清除keep-alive缓存

在 Vue.js 中&#xff0c;使用 <keep-alive> 组件可以将组件保留在内存中&#xff0c;以避免重复渲染和销毁&#xff0c;从而提高性能。如果需要手动清除 <keep-alive> 组件的缓存&#xff0c;可以通过两种方法来实现&#xff1a; 通过 $destroy 方法销毁组件&…...

2024年新手视频剪辑软件推荐-6款视频剪辑软件测评

视频剪辑软件推荐 premiere premiere 直达地址:各大软件网站 说到底,还是得专业的来,虽然很多人觉得他是收费的,但是你懂的,想要免费总是会有办法的.别的不说,剪辑这块,我还是很认可这个软件,虽然我现在还是刚入门. 剪映 剪映 抖音官方推出的一款手机视频编辑剪辑应用,提供切割…...

无货源抖店可以做吗?那些月入上万是真的吗?分享我的成功秘籍

大家好&#xff0c;我是电商花花。 现在还是有人在不停的在问&#xff0c;抖音小店无货源还可以做吗&#xff1f;那些月入上万都是真的吗&#xff1f; 当然是真的&#xff0c;而且做抖音小店非常简单&#xff0c;前提是你真的完全掌握到核心玩法&#xff0c;且要有执行力。 …...

文献阅读:DEA-Net:基于细节增强卷积和内容引导注意的单图像去雾

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 摘要Abstract文献阅读&#xff1a;DEA-Net&#xff1a;基于细节增强卷积和内容引导注意的单图像去雾1、研究背景2、方法提出3、相关知识3.1、DEConv3.3、多重卷积的…...

2024想要赚点小钱真的很容易!帮你们找的10个搞钱第二职业

我们都希望在空闲时间里增加一些额外收入&#xff0c;并有机会找到自己热爱的事业&#xff0c;每天贝兼几十上百元是一个不错的开始&#xff0c;小钱也是钱&#xff0c; 搞钱的经验会积少成多。今天分享10个搞钱第二职业&#xff0c;2024想要赚点小钱真的很容易。 一.摆摊卖花 …...

【Linux网络】再谈 “协议“

目录 再谈 "协议" 结构化数据的传输 序列化和反序列化 网络版计算器 封装套接字操作 服务端代码 服务进程执行例程 启动网络版服务端 协议定制 客户端代码 代码测试 使用JSON进行序列化与反序列化 我们程序员写的一个个解决我们实际问题&#xff0c;满…...

猫头虎分享已解决Bug || 系统监控故障:MonitoringServiceDown, MetricsCollectionError

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

Java中的基本数据类型有哪些

在Java编程语言中&#xff0c;基本数据类型&#xff08;Primitive Types&#xff09;是预定义的数据类型&#xff0c;它们不是由用户定义的类创建的&#xff0c;而是由语言本身提供的。这些基本数据类型是构成Java程序的基础&#xff0c;用于存储不同类型的值&#xff0c;如整数…...

二叉树遍历(前中后序的递归/非递归遍历、层序遍历)

二叉树的遍历 1. 二叉树的前序、中序、后序遍历 前、中、后序遍历又叫深度优先遍历 注&#xff1a;严格来说&#xff0c;深度优先遍历是先访问当前节点再继续递归访问&#xff0c;因此&#xff0c;只有前序遍历是严格意义上的深度优先遍历 首先需要知道下面几点&#xff1a; …...

UE4升级UE5 蓝图节点变更汇总(4.26/27-5.2/5.3)

一、删除部分 Ploygon Editing删除 Polygon Editing这个在4.26、4.27中的插件&#xff0c;在5.1后彻底失效。 相关的蓝图&#xff0c;如编辑器蓝图 Generate mapping UVs等&#xff0c;均失效。 如需相关功能&#xff0c;请改成Dynamic Mesh下的方法。 GetSupportedClass删…...

【python】异常处理

前言 省略各种废话&#xff0c;直接快速整理知识点 try-except 基础 作用 程序不可能永远都是对的&#xff0c;当7除a&#xff0c;a由用户输入时&#xff0c;用户输入0就会报错。try-except就是解决这些问题。 结构 多分支自定义错误类型 上方的exception是一个错误类型…...

【xv6操作系统】Lab systems calls

一、实验前须知 阅读 xv6 文档的第 2 章和第 4 章的 4.3 节和 4.4 节以及相关源文件&#xff1a; 系统调用的用户空间代码在 user/user.h 和 user/usys.pl 中。 内核空间代码在 kernel/syscall.h 和 kernel/syscall.c 中。 与进程相关的代码在 kernel/proc.h 和 kernel/proc.c…...

python的scripts文件夹作用

Windows系统&#xff1a; Scripts文件夹通常位于Python的安装目录下&#xff0c;如C:\Python\Scripts。该文件夹内包含了各种有用的工具&#xff0c;例如pip、virtualenv等&#xff0c;这些工具有助于管理和配置Python环境和依赖包。 Linux系统&#xff1a; 在Linux系统中&…...

Discuz论坛网站报错Discuz!Database Error(0)notconnect的解决办法

运营服务器大本营有段时间了&#xff0c;在运营期间遇到两次Discuz&#xff01;Database Error&#xff08;0&#xff09;notconnect报错&#xff0c;和你们分享遇到Discuz报错的解决办法&#xff0c;希望可以帮助到你。 首先网站报错&#xff08;0&#xff09;notconnect&…...

掌握mysql,看完这篇文章就够了

​数据库 对大量数据进行存储和管理&#xff08;增删改查&#xff09; 客户端&#xff1a; 黑窗口终端navicat 熊掌软件数据库分类&#xff1a; 关系型数据库 通过表与表产生关联关系&#xff0c;每个表中都存储结构化数据&#xff0c;支持sql结构化查询语言MysqlOracleSQLS…...

守护Web安全:了解Web攻击与防护策略

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...