当前位置: 首页 > news >正文

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中,您将对比回归和分类。

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import dlc, plot_data
from plt_one_addpt_onclick import plt_one_addpt_onclick
plt.style.use('./deeplearning.mplstyle')

jupyter notebook 目录中必须包含如下文件
在这里插入图片描述

分类问题

分类问题的例子比如:将电子邮件识别为垃圾邮件或非垃圾邮件,或确定肿瘤是恶性还是良性。特别地,这些是有两种可能结果的二元分类的例子。结果可以用“积极/消极”对来描述,比如“是”/“否”、“真/假”或“1”/“0”。分类数据集的图通常使用符号来表示示例的结果。在下面的图表中,“X”表示正数值,而“O”表示负结果。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])
X_train2 = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train2 = np.array([0, 0, 0, 1, 1, 1])
pos = y_train == 1
neg = y_train == 0fig,ax = plt.subplots(1,2,figsize=(8,3))
#plot 1, single variable
ax[0].scatter(x_train[pos], y_train[pos], marker='x', s=80, c = 'red', label="y=1")
ax[0].scatter(x_train[neg], y_train[neg], marker='o', s=100, label="y=0", facecolors='none', edgecolors=dlc["dlblue"],lw=3)ax[0].set_ylim(-0.08,1.1)
ax[0].set_ylabel('y', fontsize=12)
ax[0].set_xlabel('x', fontsize=12)
ax[0].set_title('one variable plot')
ax[0].legend()#plot 2, two variables
plot_data(X_train2, y_train2, ax[1])
ax[1].axis([0, 4, 0, 4])
ax[1].set_ylabel('$x_1$', fontsize=12)
ax[1].set_xlabel('$x_0$', fontsize=12)
ax[1].set_title('two variable plot')
ax[1].legend()
plt.tight_layout()
plt.show()

在这里插入图片描述

第二个图像的绘制是通过调用了名为 plot_data 的函数来完成的,因此,即使在主代码中没有明确对第二个图像的数据进行分类设置,但是通过 plot_data 函数内部的处理,可能会根据数据的标签值将其显示为不同的颜色。这样就解释了为什么即使没有在第二个图像的绘制部分设置颜色,最终的图像中仍然呈现了红色和蓝色的情况。

在上面的图表中:在单变量图中,阳性结果显示为红色的“X”和y=1。阴性结果为蓝色“O”,位于y=0处。回想一下,在线性回归的情况下,y不会被限制为两个值,而是可以是任何值。在双变量图中,y轴不可用。阳性结果用红色的“X”表示,阴性结果用蓝色的“O”表示。回想一下,在多变量线性回归的情况下,y不会是限于两个值和一个类似的情节将是三维的。

线性回归法

在前一周,我们应用了线性回归来构建预测模型。让我们用课上讲过的简单例子来试试这个方法。该模型将根据肿瘤大小预测肿瘤是良性还是恶性。试试下面的方法:点击“运行线性回归”以找到给定数据的最佳线性回归模型。注意,得到的线性模型不能很好地匹配数据。改善结果的一种选择是应用阈值。勾选“切换0.5阈值”上的复选框,以显示应用阈值时的预测结果。这些预测看起来不错,预测与数据相符。现在,在最右边的大肿瘤大小范围内(接近10)添加更多的“恶性”数据点,并重新运行线性回归。现在,模型预测了更大的肿瘤,但是x=3的数据点被错误地预测了!要清除/更新plot,请重新运行包含plot命令的单元格。

w_in = np.zeros((1))
b_in = 0
plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=False)

在这里插入图片描述
在这里插入图片描述

上面的例子表明,线性模型不足以对分类数据进行建模。该模型可以按照以下实验的描述进行扩展。

恭喜

在这个实验中,你:探索分类数据集和绘图确定线性回归不足以进行逻辑回归。

相关文章:

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中,您将对比回归和分类。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data from plt_one_addpt_onclick import plt_one_addpt_onclick plt.style.use(./deeplearning.mplstyle)jupy…...

序列的第 k 个数(c++题解)

题目描述 BSNY 在学等差数列和等比数列,当已知前三项时,就可以知道是等差数列还是等比数列。现在给你序列的前三项,这个序列要么是等差序列,要么是等比序列,你能求出第 m项的值吗。 如果第 项的值太大,对…...

Nexus - Maven私服构建和使用

文章目录 1. Maven 私服简介2. Nexus下载安装3. 如何使用Nexus私服3.1 通过Nexus下载Jar包3.2 将Jar包部署到Nexus3.3 引用别人部署的jar包 1. Maven 私服简介 Maven 私服是一种特殊的Maven远程仓库,它是架设在局域网内的仓库服务,用来代理位于外部的远…...

SpringMVC09、Ajax

9、Ajax 9.1、简介 AJAX Asynchronous JavaScript and XML(异步的 JavaScript 和 XML)。 AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。 Ajax 不是一种新的编程语言,而是一种用于创建更好更快以及交互…...

【数据结构初阶 9】内排序

文章目录 🌈 1. 直接插入排序🌈 2. 希尔排序🌈 3. 简单选择排序🌈 4. 堆排序🌈 5. 冒泡排序🌈 6. 快速排序6.1 霍尔版快排6.2 挖坑版快排6.3 双指针快排6.4 非递归快排 🌈 7. 归并排序7.1 递归版…...

后端八股笔记------Redis

Redis八股 上两种都有可能导致脏数据 所以使用两次删除缓存的技术,延时是因为数据库有主从问题需要更新,无法达到完全的强一致性,只能达到控制一致性。 一般放入缓存中的数据都是读多写少的数据 业务逻辑代码👇 写锁&#x1f4…...

HarmonyOS通过 axios发送HTTP请求

我之前的文章 HarmonyOS 发送http网络请求 那么今天 我们就来说说axios 这个第三方工具 想必所有的前端开发者都不会陌生 axios 本身也属于 HTTP请求 所以鸿蒙开发中也支持它 但首先 想在HarmonyOS中 使用第三方工具库 就要先下载安装 ohpm 具体可以参考我的文章 HarmonyOS 下…...

【Kafka系列 08】生产者消息分区机制详解

一、前言 我们在使用 Apache Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上。 比如很多公司使用 Kafka 收集应用服务器的日志数据,这种数据都是很多的,特别是对于那种大批量机器组成的集群环境,每分…...

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用---logits与标签形状指南

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用—logits与标签形状指南 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTo…...

ocr关键信心提取数据集

doc/doc_ch/dataset/kie_datasets.md PaddlePaddle/PaddleOCR - Gitee.com https://huggingface.co/datasets/howard-hou/OCR-VQA OCR-VQA Dataset | Papers With Code...

Linux中,配置systemctl操作Nginx

最近在通过Linux系统学一些技术,但是在启动Nginx时,总是需要执行其安装路径下的脚本文件,要么我们需要先进入其安装路径,要么我们每次执行命令直接拼上Nginx的完整目录,如启动时命令为/usr/local/nginx/sbin/nginx。 可…...

Sleuth(Micrometer)+ZipKin分布式链路追踪

Sleuth(Micrometer)ZipKin分布式链路追踪 Micrometer springboot3之前还可以用sleuth,springboot3之后就被Micrometer所替代 官网https://github.com/spring-cloud/spring-cloud-sleuth 为什么会出现这个技术? 在微服务框架中,一个由客户…...

fanout模式

生产者: public class Provider {public static void main(String[] args) throws IOException {Connection connection RabbitMQUtils.getConnection();Channel channel connection.createChannel();//通道声明指定的交换机 参数1:交换机名称 参数2&…...

Docker基础—CentOS中卸载Docker

要卸载已经安装好的 Docker,可以按照以下步骤进行: 1 停止正在运行的 Docker 服务 sudo systemctl stop docker 2 卸载 Docker 软件包 sudo yum remove docker-ce 3 删除 Docker 数据和配置文件(可选) sudo rm -rf /var/lib…...

深入解读 Elasticsearch 磁盘水位设置

本文将带你通过查看 Elasticsearch 源码来了解磁盘使用阈值在达到每个阶段的处理情况。 跳转文章末尾获取答案 环境 本文使用 Macos 系统测试,512M 的磁盘,目前剩余空间还有 60G 左右,所以按照 Elasticsearch 的设定,ES 中分片应…...

M1电脑 Xcode15升级遇到的问题

遇到四个问题 一、模拟器下载经常报错。 二、Xcode15报错: SDK does not contain libarclite 三、报错coreAudioTypes not found 四、xcode模拟器运行一次下次必定死机 一、模拟器下载经常报错。 可以https://developer.apple.com/download/all/?qios 下载最新的模拟器&…...

软考 系统架构设计师之回归及知识点回顾(3)

接前一篇文章:软考 系统架构设计师之回归及知识点回顾(2) 继续回顾一下之前已经介绍和讲解过的系统架构设计师中的知识点: 7. 净室软件工程 净室(Cleaning Room)软件工程是一种应用数学与统计学理论&…...

探索stable diffusion的奇妙世界--01

目录 1. 理解prompt提示词: 2. Prompt中的技术参数: 3. Prompt中的Negative提示词: 4. Prompt中的特殊元素: 5. Prompt在stable diffusion中的应用: 6. 作品展示: 在AI艺术领域,stable di…...

C语言数组的维数该如何理解?

一、问题 什么叫做维,维是不是数组中数的个数呢? 二、解答 维数是数组元素的下标个数。使⽤数组的时候,如果只有⼀个下标,则称为⼀维数组,⼀维数组⼀般表示⼀种线性数据的组合。⼆维数组则是有两个下标,可…...

opencv解析系列 - 基于DOM提取大面积植被(如森林)

Note&#xff1a;简单提取&#xff0c;不考虑后处理&#xff08;填充空洞、平滑边界等&#xff09; #include <iostream> #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include <opencv2/opencv.hpp> using namespace cv…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...