当前位置: 首页 > news >正文

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中,您将对比回归和分类。

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import dlc, plot_data
from plt_one_addpt_onclick import plt_one_addpt_onclick
plt.style.use('./deeplearning.mplstyle')

jupyter notebook 目录中必须包含如下文件
在这里插入图片描述

分类问题

分类问题的例子比如:将电子邮件识别为垃圾邮件或非垃圾邮件,或确定肿瘤是恶性还是良性。特别地,这些是有两种可能结果的二元分类的例子。结果可以用“积极/消极”对来描述,比如“是”/“否”、“真/假”或“1”/“0”。分类数据集的图通常使用符号来表示示例的结果。在下面的图表中,“X”表示正数值,而“O”表示负结果。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])
X_train2 = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train2 = np.array([0, 0, 0, 1, 1, 1])
pos = y_train == 1
neg = y_train == 0fig,ax = plt.subplots(1,2,figsize=(8,3))
#plot 1, single variable
ax[0].scatter(x_train[pos], y_train[pos], marker='x', s=80, c = 'red', label="y=1")
ax[0].scatter(x_train[neg], y_train[neg], marker='o', s=100, label="y=0", facecolors='none', edgecolors=dlc["dlblue"],lw=3)ax[0].set_ylim(-0.08,1.1)
ax[0].set_ylabel('y', fontsize=12)
ax[0].set_xlabel('x', fontsize=12)
ax[0].set_title('one variable plot')
ax[0].legend()#plot 2, two variables
plot_data(X_train2, y_train2, ax[1])
ax[1].axis([0, 4, 0, 4])
ax[1].set_ylabel('$x_1$', fontsize=12)
ax[1].set_xlabel('$x_0$', fontsize=12)
ax[1].set_title('two variable plot')
ax[1].legend()
plt.tight_layout()
plt.show()

在这里插入图片描述

第二个图像的绘制是通过调用了名为 plot_data 的函数来完成的,因此,即使在主代码中没有明确对第二个图像的数据进行分类设置,但是通过 plot_data 函数内部的处理,可能会根据数据的标签值将其显示为不同的颜色。这样就解释了为什么即使没有在第二个图像的绘制部分设置颜色,最终的图像中仍然呈现了红色和蓝色的情况。

在上面的图表中:在单变量图中,阳性结果显示为红色的“X”和y=1。阴性结果为蓝色“O”,位于y=0处。回想一下,在线性回归的情况下,y不会被限制为两个值,而是可以是任何值。在双变量图中,y轴不可用。阳性结果用红色的“X”表示,阴性结果用蓝色的“O”表示。回想一下,在多变量线性回归的情况下,y不会是限于两个值和一个类似的情节将是三维的。

线性回归法

在前一周,我们应用了线性回归来构建预测模型。让我们用课上讲过的简单例子来试试这个方法。该模型将根据肿瘤大小预测肿瘤是良性还是恶性。试试下面的方法:点击“运行线性回归”以找到给定数据的最佳线性回归模型。注意,得到的线性模型不能很好地匹配数据。改善结果的一种选择是应用阈值。勾选“切换0.5阈值”上的复选框,以显示应用阈值时的预测结果。这些预测看起来不错,预测与数据相符。现在,在最右边的大肿瘤大小范围内(接近10)添加更多的“恶性”数据点,并重新运行线性回归。现在,模型预测了更大的肿瘤,但是x=3的数据点被错误地预测了!要清除/更新plot,请重新运行包含plot命令的单元格。

w_in = np.zeros((1))
b_in = 0
plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=False)

在这里插入图片描述
在这里插入图片描述

上面的例子表明,线性模型不足以对分类数据进行建模。该模型可以按照以下实验的描述进行扩展。

恭喜

在这个实验中,你:探索分类数据集和绘图确定线性回归不足以进行逻辑回归。

相关文章:

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中,您将对比回归和分类。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data from plt_one_addpt_onclick import plt_one_addpt_onclick plt.style.use(./deeplearning.mplstyle)jupy…...

序列的第 k 个数(c++题解)

题目描述 BSNY 在学等差数列和等比数列,当已知前三项时,就可以知道是等差数列还是等比数列。现在给你序列的前三项,这个序列要么是等差序列,要么是等比序列,你能求出第 m项的值吗。 如果第 项的值太大,对…...

Nexus - Maven私服构建和使用

文章目录 1. Maven 私服简介2. Nexus下载安装3. 如何使用Nexus私服3.1 通过Nexus下载Jar包3.2 将Jar包部署到Nexus3.3 引用别人部署的jar包 1. Maven 私服简介 Maven 私服是一种特殊的Maven远程仓库,它是架设在局域网内的仓库服务,用来代理位于外部的远…...

SpringMVC09、Ajax

9、Ajax 9.1、简介 AJAX Asynchronous JavaScript and XML(异步的 JavaScript 和 XML)。 AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术。 Ajax 不是一种新的编程语言,而是一种用于创建更好更快以及交互…...

【数据结构初阶 9】内排序

文章目录 🌈 1. 直接插入排序🌈 2. 希尔排序🌈 3. 简单选择排序🌈 4. 堆排序🌈 5. 冒泡排序🌈 6. 快速排序6.1 霍尔版快排6.2 挖坑版快排6.3 双指针快排6.4 非递归快排 🌈 7. 归并排序7.1 递归版…...

后端八股笔记------Redis

Redis八股 上两种都有可能导致脏数据 所以使用两次删除缓存的技术,延时是因为数据库有主从问题需要更新,无法达到完全的强一致性,只能达到控制一致性。 一般放入缓存中的数据都是读多写少的数据 业务逻辑代码👇 写锁&#x1f4…...

HarmonyOS通过 axios发送HTTP请求

我之前的文章 HarmonyOS 发送http网络请求 那么今天 我们就来说说axios 这个第三方工具 想必所有的前端开发者都不会陌生 axios 本身也属于 HTTP请求 所以鸿蒙开发中也支持它 但首先 想在HarmonyOS中 使用第三方工具库 就要先下载安装 ohpm 具体可以参考我的文章 HarmonyOS 下…...

【Kafka系列 08】生产者消息分区机制详解

一、前言 我们在使用 Apache Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上。 比如很多公司使用 Kafka 收集应用服务器的日志数据,这种数据都是很多的,特别是对于那种大批量机器组成的集群环境,每分…...

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用---logits与标签形状指南

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用—logits与标签形状指南 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTo…...

ocr关键信心提取数据集

doc/doc_ch/dataset/kie_datasets.md PaddlePaddle/PaddleOCR - Gitee.com https://huggingface.co/datasets/howard-hou/OCR-VQA OCR-VQA Dataset | Papers With Code...

Linux中,配置systemctl操作Nginx

最近在通过Linux系统学一些技术,但是在启动Nginx时,总是需要执行其安装路径下的脚本文件,要么我们需要先进入其安装路径,要么我们每次执行命令直接拼上Nginx的完整目录,如启动时命令为/usr/local/nginx/sbin/nginx。 可…...

Sleuth(Micrometer)+ZipKin分布式链路追踪

Sleuth(Micrometer)ZipKin分布式链路追踪 Micrometer springboot3之前还可以用sleuth,springboot3之后就被Micrometer所替代 官网https://github.com/spring-cloud/spring-cloud-sleuth 为什么会出现这个技术? 在微服务框架中,一个由客户…...

fanout模式

生产者: public class Provider {public static void main(String[] args) throws IOException {Connection connection RabbitMQUtils.getConnection();Channel channel connection.createChannel();//通道声明指定的交换机 参数1:交换机名称 参数2&…...

Docker基础—CentOS中卸载Docker

要卸载已经安装好的 Docker,可以按照以下步骤进行: 1 停止正在运行的 Docker 服务 sudo systemctl stop docker 2 卸载 Docker 软件包 sudo yum remove docker-ce 3 删除 Docker 数据和配置文件(可选) sudo rm -rf /var/lib…...

深入解读 Elasticsearch 磁盘水位设置

本文将带你通过查看 Elasticsearch 源码来了解磁盘使用阈值在达到每个阶段的处理情况。 跳转文章末尾获取答案 环境 本文使用 Macos 系统测试,512M 的磁盘,目前剩余空间还有 60G 左右,所以按照 Elasticsearch 的设定,ES 中分片应…...

M1电脑 Xcode15升级遇到的问题

遇到四个问题 一、模拟器下载经常报错。 二、Xcode15报错: SDK does not contain libarclite 三、报错coreAudioTypes not found 四、xcode模拟器运行一次下次必定死机 一、模拟器下载经常报错。 可以https://developer.apple.com/download/all/?qios 下载最新的模拟器&…...

软考 系统架构设计师之回归及知识点回顾(3)

接前一篇文章:软考 系统架构设计师之回归及知识点回顾(2) 继续回顾一下之前已经介绍和讲解过的系统架构设计师中的知识点: 7. 净室软件工程 净室(Cleaning Room)软件工程是一种应用数学与统计学理论&…...

探索stable diffusion的奇妙世界--01

目录 1. 理解prompt提示词: 2. Prompt中的技术参数: 3. Prompt中的Negative提示词: 4. Prompt中的特殊元素: 5. Prompt在stable diffusion中的应用: 6. 作品展示: 在AI艺术领域,stable di…...

C语言数组的维数该如何理解?

一、问题 什么叫做维,维是不是数组中数的个数呢? 二、解答 维数是数组元素的下标个数。使⽤数组的时候,如果只有⼀个下标,则称为⼀维数组,⼀维数组⼀般表示⼀种线性数据的组合。⼆维数组则是有两个下标,可…...

opencv解析系列 - 基于DOM提取大面积植被(如森林)

Note&#xff1a;简单提取&#xff0c;不考虑后处理&#xff08;填充空洞、平滑边界等&#xff09; #include <iostream> #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include <opencv2/opencv.hpp> using namespace cv…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

Unity UGUI Button事件流程

场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...