当前位置: 首页 > news >正文

数据结构:图及相关算法讲解

    • 1.图的基本概念
    • 2. 图的存储结构
      • 2.1邻接矩阵
      • 2.2邻接表
      • 2.3两种实现的比较
    • 3.图的遍历
      • 3.1 图的广度优先遍历
      • 3.2 图的深度优先遍历
    • 4.最小生成树
      • 4.1 Kruskal算法
      • 4.2 Prim算法
      • 4.3 两个算法比较
    • 5.最短路径
      • 5.1两个抽象存储
      • 5.2单源最短路径--Dijkstra算法
      • 5.3单源最短路径--Bellman-Ford算法
      • 5.4 多源最短路径--Floyd-Warshall算法
      • 5.5 几个算法的比较

1.图的基本概念

概念多,但是不难理解,难的算法部分基本都是图解。

图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中V为顶点集合,E为边集合

顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>

有向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),<x, y>和<y, x>是两条不同的边,比如下图G3和G4为有向图。
无向图:顶点对(x, y)是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)是同一条边,比如下图G1和G2为无向图。
在这里插入图片描述
有向完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,则称此图为无向完全图,比如上图G1;
无向完全图:在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4。

邻接顶点:在无向图G中,若 (u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若 <u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶点u,并称边<u, v>与顶点u和顶点v相关联。

顶点的度顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)。
在这里插入图片描述

权值边附带的数据信息
路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。
路径长度对于不带权的图,一条路径的路径长度是指该路径上的边的条数
对于带权的图,一条路径的路径长度是指该路径上各个边权值的总和。

简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路径。若路径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环。
在这里插入图片描述

子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图
在这里插入图片描述

连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一对顶点都是连通的,则称此图为连通图

强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图是强连通图。

生成树:一个连通图的最小连通子图称作该图的生成树(形成连通图并且使用的边数量少)。有n个顶点的连通图的生成树有n个顶点和n-1条边


图与树的关系

  1. 树是一种特殊的无环连通图
  2. 树关注的节点(顶点)存储的值。
  3. 图关注的是顶点关系以及边的权值。



2. 图的存储结构

因为图中既有节点,又有边(节点与节点之间的关系),因此,在图的存储中,只需要保存:节点和边关系即可。节点保存比较简单,只需要一段连续空间即可,那边关系该怎么保存呢?

2.1邻接矩阵

因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系
在这里插入图片描述
注意:

  1. 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一定是对称的,第i行(列)元素之后就是顶点i 的出(入)度
  2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个顶点不通,则使用无穷大(自己设定值表示无穷)代替。
    在这里插入图片描述

代码实现

namespace maritx
{//V为顶点类型,无论什么类型都可以转换位对于的下标,访问时使用哈希表转换出下标//W为边类型,一般为数值类型,MAX_W代表边不存在//Direction表示方向,默认无向template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>  //默认无向class Graph{private:vector<V> _vertexs;  //顶点map<V, size_t>  _VIndexMap;  //顶点 :下标vector<vector<W>> _matrix;  //邻接矩阵public:typedef Graph<V, W, MAX_W, Direction> self;Graph() = default;Graph(const V* vertexs, size_t n){_vertexs.resize(n);for (size_t i = 0; i < n; i++){_vertexs[i] = vertexs[i];_VIndexMap[vertexs[i]] = i;}//初始化邻接矩阵_matrix.resize(n);for (int i = 0; i < n; i++){_matrix[i].resize(n, MAX_W);}}size_t GetVIndex(const V& v){if (_VIndexMap.count(v)){return _VIndexMap[v];}else   //如果没有这个顶点{throw invalid_argument("不存在的顶点");//assert(false);return -1;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVIndex(src);size_t dsti = GetVIndex(dst);_AddEdge(srci, dsti, w);}void _AddEdge(int srci, int dsti, const W& w){_matrix[srci][dsti] = w;  //有向图只需添加一边if (Direction == false){_matrix[dsti][srci] = w;}}};
}

2.2邻接表

邻接表:使用数组表示顶点的集合,使用链表表示边的关系

  1. 无向图邻接表存储
    在这里插入图片描述

  2. 有向图邻接表存储
    在这里插入图片描述

代码实现:

namespace link_table
{template<class W>struct Edge{W _w;  //权值int _dsti;Edge<W>* _next;Edge(int dsti,const W& w):_dsti(dsti),_w(w),_next(nullptr){}};template<class V, class W, bool Direction = false>  //默认无向class Graph{public:typedef Edge<W> Edge;Graph(const V* vertexs, size_t n){_vertexs.resize(n);for (size_t i = 0; i < n; i++){_vertexs[i] = vertexs[i];_VIndexMap[vertexs[i]] = i;}//初始化邻接矩阵_tables.resize(n, nullptr);}size_t GetVIndex(const V& v){if (_VIndexMap.count(v)){return _VIndexMap[v];}else   //如果没有这个顶点{throw invalid_argument("不存在的顶点");//assert(false);return -1;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVIndex(src);size_t dsti = GetVIndex(dst);Edge* newnode = new Edge(dsti, w);newnode->_next = _tables[srci];_tables[srci] = newnode; //有向图只需添加一边if (Direction == false){Edge* newnode = new Edge(srci, w);newnode->_next = _tables[dsti];_tables[dsti] = newnode;}}void Print(){// 打印顶点和下标映射关系for (size_t i = 0; i < _vertexs.size(); ++i){cout << _vertexs[i] << "-" << i << " ";}cout << endl << endl;for (int i = 0; i < _tables.size(); i++){Edge* cur = _tables[i];if(cur)  cout << i;while (cur){cout << "->" << cur->_dsti ;cur = cur->_next;}cout << endl;}}private:vector<V> _vertexs;  //顶点map<V, int>  _VIndexMap;  //顶点:下标vector<Edge*> _tables;  //邻接表};
}

2.3两种实现的比较

  1. 对于邻接矩阵优点是确定AB两点间关系时方便。缺点是对于边数量少的情况,想遍历与某点的出(入)边,需要遍历矩阵的一行(N),空间也会很浪费。
  2. 对于邻接表优点是边少时遍历点的出(入)边,有几条边就走几次缺点是想确定AB两点间关系时需要遍历一次邻接表
  3. 推荐关系复杂,边多时使用邻接矩阵。 关系简单,边少时使用邻接表
  4. 两种存储实现图相关算法差别不大,后面的算法都是基于邻接矩阵的



3.图的遍历

给定一个图G和其中任意一个顶点v0,从v0出发,沿着图中各边访问图中的所有顶点,且每个顶点仅被遍历一次。"遍历"即对结点进行某种操作的意思。
树的遍历是自顶点向下,图的遍历是选定一个顶点作为起点。

3.1 图的广度优先遍历

在这里插入图片描述
在这里插入图片描述

//遍历
void BFS(const V& v)
{size_t n = _vertexs.size();size_t srci = GetVIndex(v);vector<bool> visited(n);queue<size_t> q;q.push(srci);visited[srci] = true;while (!q.empty()){size_t sz = q.size();for (size_t i = 0; i < sz; i++){size_t top = q.front();  q.pop();cout << _vertexs[top] << " ";for (size_t j = 0; j < n; j++){if (_matrix[top][j] != MAX_W && visited[j] != true)  //存在并且没有访问过{q.push(j);visited[j] = true;}}}}//有可能存在从v点出发到不了某些点的情况,这时可遍历vis数组for (int i = 0; i < n; i++){if (visited[i] == false){cout << _vertexs[i] << " ";}}cout << endl;
}

3.2 图的深度优先遍历

在这里插入图片描述

void DFS(const V& v)
{size_t srci = GetVIndex(v);vector<bool> visited(_vertexs.size());dfs(srci, visited);//有可能存在从v点出发到不了某些点的情况,这时可遍历vis数组for (int i = 0; i < n; i++){if (visited[i] == false){cout << _vertexs[i] << " ";}}
}void dfs(size_t srci, vector<bool>& visited)
{cout << _vertexs[srci] << " ";visited[srci] = true;for (int i = 0; i < _vertexs.size(); i++){if (_matrix[srci][i] != MAX_W && visited[i] != true){dfs(i, visited);}}
}



4.最小生成树

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路

若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。因此构造最小生成树的准则有三条:

  1. 只能使用图中的边来构造最小生成树
  2. 只能使用恰好n-1条边来连接图中的n个顶点
  3. 选用的n-1条边不能构成回路

构造最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略

贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是整体最优的的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优解,Kruskal算法和Prim算法都可保证最优,两种策略相当容易记忆,证明难度较大,本文不做证明


4.1 Kruskal算法

  1. 每次都选用图中权值最小的边来构造,可以使用堆实现。
  2. 只能选n - 1条边
  3. 选用的边不可构成回路,可以使用并查集来判断环是否存在。
    不了解并查集的可以看这篇文章(很简单的):并查集
    不了解堆的可以看这篇文章:堆

在这里插入图片描述

struct Edge   //存储边信息
{int _srci;int _dsti;W _w;Edge(int srci, int dsti, W w):_srci(srci),_dsti(dsti),_w(w){}bool operator>(const Edge& edge) const{return _w > edge._w;}
};//Kruskal(克鲁斯卡尔),生成的了返回权值,生成不了返回W默认值
W Kruskal(self& minTree)
{//初始化一下最小生成树size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._VIndexMap = _VIndexMap;minTree._matrix.resize(n);for (auto& e : minTree._matrix){e.resize(_vertexs.size(), MAX_W);}UnionFindSet ufs(n);  //并查集priority_queue<Edge, vector<Edge>, greater<Edge>> pq;  //堆//入边for (int i = 0; i < n; i++){for (int j = i; j < n; j++)  //无向图只需要一半即可{if(_matrix[i][j] != MAX_W)pq.push(Edge(i, j, _matrix[i][j]));}}//依次选最小边,选n - 1size_t esum = 0;W ret = 0;//不断选最小边即可while (!pq.empty()){Edge e = pq.top();  pq.pop();if (!ufs.InSet(e._srci, e._dsti)) //不在一个集合(不构成回路),当前边可选{minTree.AddEdge(e._srci, e._dsti, e._w);esum++;ret += e._w;ufs.Union(e._srci, e._dsti);}}//判断可否形成最小生成树if (esum == n - 1){return ret;}else{return W();}
}

4.2 Prim算法

  1. Kruskal算法侧重边,Prim算法侧重点
  2. 有X,Y两个点集合,X表示已在最小生成树中的点,Y表示还未在最小生成树中的点。故选边时选的是X->Y所有边中的最小权值。
  3. 只能选n - 1条边
  4. 选用的边不可构成回路,只需选的边起点在X,终点在Y即可。
    在这里插入图片描述
//prim(普利姆算法)
W Prim(self& minTree, const V& src)
{//初始化一下最小生成树size_t n = _vertexs.size();minTree._vertexs = _vertexs;minTree._VIndexMap = _VIndexMap;minTree._matrix.resize(n);for (auto& e : minTree._matrix){e.resize(_vertexs.size(), MAX_W);}size_t srci = GetVIndex(src);  //起点//存储边的堆priority_queue<Edge, vector<Edge>, greater<Edge>> pq;//X和Y集合(不在X就在Y)vector<bool> X(n, false);X[srci] = true;//把X初始点的边入进去for (size_t i = 0; i < n; i++){if (_matrix[srci][i] != MAX_W){pq.push(Edge(srci, i, _matrix[srci][i]));}}//选出边的条数size_t esum = 0;W ret = 0;while (!pq.empty()){Edge e = pq.top();  pq.pop();if (X[e._dsti] != true)  //终点在Y,选了不成环{minTree.AddEdge(e._srci, e._dsti, e._w);		esum++;ret += e._w;X[e._dsti] = true;  for (int i = 0; i < n; i++){//入边为X-Y,X-X的边没必要入if (_matrix[e._dsti][i] != MAX_W && X[i] != true)  {pq.push(Edge(e._dsti, i, _matrix[e._dsti][i]));}}}}//判断可否形成最小生成树if (esum == n - 1){return ret;}else{return W();}
}

4.3 两个算法比较

  1. Kruskal算法适用于稀疏图,即边少的图,因为该算法需要用堆维护所有的边
  2. Prim算法适用于稠密图,即边多的图,因为该算法的要点在点,并不需要维护所有的边(X-X的边无需维护)。



5.最短路径

5.1两个抽象存储

在这里插入图片描述
基于这两个抽象数据结构还原最短路径

//打印最短路径的算法
void PrinrtShotPath(const V& src, const vector<W>& dist, const vector<int>& pPath)
{size_t n = _vertexs.size();size_t srci = GetVIndex(src);for (size_t i = 0; i < n; i++){if (i != srci)  //源到源不打印{size_t par = i;vector<size_t> path;  //先从结尾开始添加while (par != srci){path.push_back(par);par = pPath[par];}path.push_back(srci); reverse(path.begin(), path.end());  //翻转过来for (auto pos : path){cout << _vertexs[pos] << "->";}cout << dist[i] << endl;  //打印长度}}
}

5.2单源最短路径–Dijkstra算法

  1. 贪心,分为两个集合Q和S,其中Q表示已经确定最短路径的顶点集合,S表示未确定最短路径的顶点集合
  2. 在已有最短路径的基础上更新到其他顶点的路径,如果更短就更新,这个操作称为松弛顶点。(建议配合图解看)
  3. Dijkstra算法不适用于带负权的最短路径问题(后面解释)。

图解:

在这里插入图片描述

正确性证明:

  1. 边权没有负数
    (1)如果现在遍历 起点->S(未确定最短路径点集合)的边,找到一条s->x(记和为len)的最短,那就可以确定这条是s->x的最短
    (2)因为如果存在s->……(和一定小于len)->x的一条更短路径,那遍历时就会先选中s->……中的顶点进行松弛,而不是选中x进行松弛。
  2. 边权有负数
    (1)遍历 起点->S(未确定最短路径点集合)的边,找到一条s->x(记和为len)的最短,不能确定这条是s->x的最短
    (2)因为可能存在s->……(大于len)->负权->x(小于len),这时候就会更新不到这条真正的最短
//单源最短路径:dijkstra算法(不带负权)
//每次都可以确定一个点的最短路径,然后围绕这个点松弛
//准确性:如果当前选的不是最短,那就不会选中当前,而是其他的点,在松弛操作中更新出最短
//两个输出型参数,dist为路径长,pPath记录路径
void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)  
{size_t n = _vertexs.size();size_t srci = GetVIndex(src);//初始化dist.resize(n, MAX_W);pPath.resize(n, -1);dist[srci] = W();//Q中为true,说明已经确认最短路径vector<bool> Q(n, false);//要确定N个顶点的最短,循环N次(其实只要N-1次即可,但为了逻辑就多循环一次)for (size_t i = 0; i < n; i++){size_t u = srci;W min = MAX_W;//找到最短的路径,该路径已经可确认为最短for (size_t j = 0; j < n; j++){if (Q[j] == false && dist[j] < min){u = j;min = dist[j];}}Q[u] = true;//松弛顶点  srci-u  u-v  ->  srci-vfor (size_t v = 0; v < n; v++){if (_matrix[u][v] != MAX_W  && dist[u] + _matrix[u][v] < dist[v]){dist[v] = dist[u] + _matrix[u][v];pPath[v] = u;}}	}
}

5.3单源最短路径–Bellman-Ford算法

  1. Bellman-Ford算法本质是暴力算法。
  2. Bellman-Ford算法可以解决带负权的问题。
  3. Bellman-Ford算法的核心在于松弛顶点。

图解:
在这里插入图片描述
负权回路:
在这里插入图片描述

//单源最短路径:BellmanFord算法(带负权,注意负权成环)
bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
{size_t n = _vertexs.size();size_t srci = GetVIndex(src);//初始化dist.resize(n, MAX_W);pPath.resize(n, -1);dist[srci] = W();//最多更新n - 1for (size_t k = 0; k < n - 1; k++){//优化的标志位,如果没有松弛更短,说明所有顶点最短路径都找到了bool flag = true;//所有顶点做一次松弛for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){//src - i - jif (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])  //更新出更短{dist[j] = dist[i] + _matrix[i][j];pPath[j] = i;flag = false;}}}if (flag){break;}}for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){//还能更新说明存在负权回路问题if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])  //更新出更短{return false;}}}return true;
}

5.4 多源最短路径–Floyd-Warshall算法

  1. 多源最短,即求任意两点的最短路径
  2. 适用于带负权的图
  3. Floyd-Warshall算法的核心是动态规划

图解:
在这里插入图片描述

在这里插入图片描述

//多源最短路径:FloydWarshall
//vvDist和vvPPath是二维的,vvDist[x]和vvPPath[x]表示以x为起点到各点的最短路径情况
void FloydWarShall(vector<vector<W>>& vvDist, vector<vector<int>>& vvPPath)
{size_t n = _vertexs.size();vvDist.resize(n);vvPPath.resize(n);// 初始化权值和路径矩阵for (size_t i = 0; i < n; ++i){vvDist[i].resize(n, MAX_W);vvPPath[i].resize(n, -1);}//把直接相连的边入进来for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (_matrix[i][j] != MAX_W){vvDist[i][j] = _matrix[i][j];vvPPath[i][j] = i;}//i == j,即自己到自己if (i == j){vvDist[i][j] = W();}}}//中间经过了(0, k)这些顶点for (size_t k = 0; k < n; ++k){for (size_t i = 0; i < n; i++){for (size_t j = 0; j < n; j++){if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W && vvDist[i][k] + vvDist[k][j] < vvDist[i][j]){vvDist[i][j] = vvDist[i][k] + vvDist[k][j];vvPPath[i][j] = vvPPath[k][j];}}}}
}

5.5 几个算法的比较

  1. 假设图是稠密图,我们使用矩阵存储。 对这些算法的时间复杂度分析:
    Dijkstra算法:O(N ^ 2)。
    Bellman-Ford算法:O(N ^ 3)。
    Floyd-Warshall算法:O(N ^ 3)。
  2. Dijkstra算法适用于不带负权的图,如果想对不带负权的图找多源最短路径,也可以循环N次Dijkstra算法,效率和Floyd-Warshall差不多。
  3. Bellman-Ford算法和Floyd-Warshall算法都可以解决带负权的问题。
  4. Bellman-Ford算法大多数情况是快于Floyd-Warshall算法的,只是要单源最短且带负权用Bellman-Ford即可。而且针对Bellman-Ford算法可以用SPFA队列优化。(SPFA优化本文不讲,SPFA优化后时间复杂度不变,最坏的情况和朴素Bellman-Ford算法一致)
  5. Floyd-Warshall算法用于解决多源最短路径是效果较好,而且可解决带负权问题

相关文章:

数据结构:图及相关算法讲解

图 1.图的基本概念2. 图的存储结构2.1邻接矩阵2.2邻接表2.3两种实现的比较 3.图的遍历3.1 图的广度优先遍历3.2 图的深度优先遍历 4.最小生成树4.1 Kruskal算法4.2 Prim算法4.3 两个算法比较 5.最短路径5.1两个抽象存储5.2单源最短路径--Dijkstra算法5.3单源最短路径--Bellman-…...

【c++设计模式06】创建型4:单例模式(Singleton Pattern)

【c++设计模式06】创建型4:单例模式(Singleton Pattern) 一、定义二、适用场景三、确保,一个类可以实例化一个对象四、分类1、懒汉式——首次访问时才创建实例2、饿汉式——类加载时就创建实例五、线程安全性深入讨论(懒汉式单例模式)1、懒汉式单例真的线程不安全吗?——…...

Python-OpenCV-边缘检测

摘要&#xff1a; 本文介绍了使用Python和OpenCV进行边缘检测的方法&#xff0c;涵盖了基本概念、核心组件、工作流程&#xff0c;以及详细的实现步骤和代码示例。同时&#xff0c;文章也探讨了相关的技巧与实践&#xff0c;并给出了常见问题与解答。通过阅读本文&#xff0c;…...

C#中使用 Prism 框架

C#中使用 Prism 框架 前言一、安装 Prism 框架二、模块化开发三、依赖注入四、导航五、事件聚合六、状态管理七、测试 前言 Prism 框架是一个用于构建可维护、灵活和可扩展的 XAML 应用程序的框架。它提供了一套工具和库&#xff0c;帮助开发者实现诸如依赖注入、模块化、导航…...

什么是线程池,线程池的概念、优点、缺点,如何使用线程池,最大线程池怎么定义?

线程池&#xff08;Thread Pool&#xff09;是一种并发编程中常用的技术&#xff0c;用于管理和重用线程。它由线程池管理器、工作队列和线程池线程组成。 线程池的基本概念是&#xff0c;在应用程序启动时创建一定数量的线程&#xff0c;并将它们保存在线程池中。当需要执行任…...

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中&#xff0c;您将对比回归和分类。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data from plt_one_addpt_onclick import plt_one_addpt_onclick plt.style.use(./deeplearning.mplstyle)jupy…...

序列的第 k 个数(c++题解)

题目描述 BSNY 在学等差数列和等比数列&#xff0c;当已知前三项时&#xff0c;就可以知道是等差数列还是等比数列。现在给你序列的前三项&#xff0c;这个序列要么是等差序列&#xff0c;要么是等比序列&#xff0c;你能求出第 m项的值吗。 如果第 项的值太大&#xff0c;对…...

Nexus - Maven私服构建和使用

文章目录 1. Maven 私服简介2. Nexus下载安装3. 如何使用Nexus私服3.1 通过Nexus下载Jar包3.2 将Jar包部署到Nexus3.3 引用别人部署的jar包 1. Maven 私服简介 Maven 私服是一种特殊的Maven远程仓库&#xff0c;它是架设在局域网内的仓库服务&#xff0c;用来代理位于外部的远…...

SpringMVC09、Ajax

9、Ajax 9.1、简介 AJAX Asynchronous JavaScript and XML&#xff08;异步的 JavaScript 和 XML&#xff09;。 AJAX 是一种在无需重新加载整个网页的情况下&#xff0c;能够更新部分网页的技术。 Ajax 不是一种新的编程语言&#xff0c;而是一种用于创建更好更快以及交互…...

【数据结构初阶 9】内排序

文章目录 &#x1f308; 1. 直接插入排序&#x1f308; 2. 希尔排序&#x1f308; 3. 简单选择排序&#x1f308; 4. 堆排序&#x1f308; 5. 冒泡排序&#x1f308; 6. 快速排序6.1 霍尔版快排6.2 挖坑版快排6.3 双指针快排6.4 非递归快排 &#x1f308; 7. 归并排序7.1 递归版…...

后端八股笔记------Redis

Redis八股 上两种都有可能导致脏数据 所以使用两次删除缓存的技术&#xff0c;延时是因为数据库有主从问题需要更新&#xff0c;无法达到完全的强一致性&#xff0c;只能达到控制一致性。 一般放入缓存中的数据都是读多写少的数据 业务逻辑代码&#x1f447; 写锁&#x1f4…...

HarmonyOS通过 axios发送HTTP请求

我之前的文章 HarmonyOS 发送http网络请求 那么今天 我们就来说说axios 这个第三方工具 想必所有的前端开发者都不会陌生 axios 本身也属于 HTTP请求 所以鸿蒙开发中也支持它 但首先 想在HarmonyOS中 使用第三方工具库 就要先下载安装 ohpm 具体可以参考我的文章 HarmonyOS 下…...

【Kafka系列 08】生产者消息分区机制详解

一、前言 我们在使用 Apache Kafka 生产和消费消息的时候&#xff0c;肯定是希望能够将数据均匀地分配到所有服务器上。 比如很多公司使用 Kafka 收集应用服务器的日志数据&#xff0c;这种数据都是很多的&#xff0c;特别是对于那种大批量机器组成的集群环境&#xff0c;每分…...

【PyTorch】进阶学习:BCEWithLogitsLoss在多标签分类任务中的正确使用---logits与标签形状指南

【PyTorch】进阶学习&#xff1a;BCEWithLogitsLoss在多标签分类任务中的正确使用—logits与标签形状指南 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTo…...

ocr关键信心提取数据集

doc/doc_ch/dataset/kie_datasets.md PaddlePaddle/PaddleOCR - Gitee.com https://huggingface.co/datasets/howard-hou/OCR-VQA OCR-VQA Dataset | Papers With Code...

Linux中,配置systemctl操作Nginx

最近在通过Linux系统学一些技术&#xff0c;但是在启动Nginx时&#xff0c;总是需要执行其安装路径下的脚本文件&#xff0c;要么我们需要先进入其安装路径&#xff0c;要么我们每次执行命令直接拼上Nginx的完整目录&#xff0c;如启动时命令为/usr/local/nginx/sbin/nginx。 可…...

Sleuth(Micrometer)+ZipKin分布式链路追踪

Sleuth(Micrometer)ZipKin分布式链路追踪 Micrometer springboot3之前还可以用sleuth&#xff0c;springboot3之后就被Micrometer所替代 官网https://github.com/spring-cloud/spring-cloud-sleuth 为什么会出现这个技术&#xff1f; 在微服务框架中&#xff0c;一个由客户…...

fanout模式

生产者&#xff1a; public class Provider {public static void main(String[] args) throws IOException {Connection connection RabbitMQUtils.getConnection();Channel channel connection.createChannel();//通道声明指定的交换机 参数1&#xff1a;交换机名称 参数2&…...

Docker基础—CentOS中卸载Docker

要卸载已经安装好的 Docker&#xff0c;可以按照以下步骤进行&#xff1a; 1 停止正在运行的 Docker 服务 sudo systemctl stop docker 2 卸载 Docker 软件包 sudo yum remove docker-ce 3 删除 Docker 数据和配置文件&#xff08;可选&#xff09; sudo rm -rf /var/lib…...

深入解读 Elasticsearch 磁盘水位设置

本文将带你通过查看 Elasticsearch 源码来了解磁盘使用阈值在达到每个阶段的处理情况。 跳转文章末尾获取答案 环境 本文使用 Macos 系统测试&#xff0c;512M 的磁盘&#xff0c;目前剩余空间还有 60G 左右&#xff0c;所以按照 Elasticsearch 的设定&#xff0c;ES 中分片应…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...