当前位置: 首页 > news >正文

Python数值微积分,摆脱被高数支配的恐惧

文章目录

    • 差分和累加
    • 积分
    • 多重积分

Python科学计算:数组💯数据生成

差分和累加

微积分是现代科学最基础的数学工具,但其应用对象往往是连续函数,而其在非连续函数的类比,便是差分与累加。在【numpy】中,可通过【diff】和【cumsum】来完成这两项任务。

y = sin ⁡ 2 x y=\sin 2x y=sin2x为例,其导数为 d y d x = 2 cos ⁡ x \frac{\text dy}{\text dx}=2\cos x dxdy=2cosx,积分则为 ∫ y d x = − 1 2 cos ⁡ 2 x + C \int y\text dx=-\frac{1}{2}\cos 2x+C ydx=21cos2x+C C C C是某个常数。这三个函数的曲线分别为

在这里插入图片描述

绘图函数如下

import matplotlib.pyplot as plt
import numpy as np
dx = 0.1
x = np.arange(100)*dx
y = np.sin(2*x)
plt.plot(x, y, label="y=sin(2x)")
plt.plot(x[1:], np.diff(y)/dx, label="diff(y)/dx")
plt.plot(x, np.cumsum(y)*dx, label="cumsum(y)*dx")plt.grid()
plt.legend()
plt.show()

其中,diff用于求差分,其输入参数除了待差分数组之外,还有n和axis,比较常用,n为差分的阶数,默认为1;axis用于高维数组中,表示计算的方向,默认-1表示最后一个轴。

cumsum用于累加,对于输入数组 y y y,其返回数组为 S S S,则 S n = ∑ i = 0 n y i S_n=\sum_{i=0}^ny_i Sn=i=0nyi

无论diff还是cumsum,均只针对输入数组进行操作,而不会考虑微积分中至关重要的 d x \text dx dx,所以绘图时对这一部分进行了补全。

此外,由于差分的实质是后一个减去前一个,所以元素个数必然会减少,所以在绘图时,令 x x x从1开始。这是一个在编程时很容易出错的地方,故而numpy还提供了另一个函数【ediff1d】,这是一个只做一阶差分计算的函数,但提供了to_endto_begin参数,分别用于在diff计算结果的后面或前面补充数值。

积分

积分一开始被引入教材,是以梯形求和为示例的:将函数 y = f ( x ) y=f(x) y=f(x)无限分割,然后对相邻两点取平均,再乘以 d x \text dx dx之后进行求和,即 lim ⁡ δ x → 0 ∑ y i + y i + 1 2 δ x \lim_{\delta_x\to0}\sum \frac{y_{i}+y_{i+1}}{2}\delta_x limδx02yi+yi+1δx

【trapz】可实现上述过程,但要求 y y y是一个给定的数组,且 δ x \delta_x δx为1。很显然,这个过程只能称之为梯形求和,毕竟积分的要求是 δ x → 0 \delta_x\to0 δx0 1 1 1 0 0 0有着本质的区别。

为此,【scipy.intergrate】作为顾名思义的积分模块,提供了真真正正的积分。为了行文简洁,后文将此模块简称为【si】模块。

【quad】是【si】中最常用的积分函数,以函数 x 2 x^2 x2 sin ⁡ x \sin x sinx为例,其使用流程如下

import numpy as np
from scipy.integrate import quadfunc = lambda x: x**2
quad(func, 0, 4)        # (21.33, 2.37-13)
quad(np.sin, 0, np.pi)  # (2.0, 2.22e-14)

其中,quad共输入了三个参数,分别是待积分函数、积分下界与积分上界,其返回值有二,分别为积分结果和计算误差。

这两个测试函数的解析形式如下,可见计算结果基本温和。

∫ 0 4 x 2 d x = 1 3 x 3 ∣ 0 4 = 64 3 ≈ 21.3 ∫ 0 π sin ⁡ x d x = − cos ⁡ x ∣ 0 π = 2 \int_0^4 x^2\text dx=\frac{1}{3}x^3\big|^4_0=\frac{64}{3}\approx 21.3\\ \int^\pi_0\sin x\text dx=-\cos x\big|^\pi_0=2 04x2dx=31x3 04=36421.30πsinxdx=cosx 0π=2

除了三个必须输入的参数之外,下列参数也较为常用

  • argsfunc函数中,除待求积分参数之外的其他参数,默认为空
  • epsabs, epsrel 分别为绝对和相对误差,默认为 1.49 × 1 0 − 8 1.49\times10^{-8} 1.49×108
  • limit 自适应算法中子区间的个数,默认50
  • points 断点位置,默认为None
  • weight, wvar 定义域区间内的权重类型和权重,默认为None
  • wopts, maxp1 切比雪夫矩及其上限,默认为None和50
  • full_output=0, limlst=50, complex_func=False

其中,weightwvar参数的具体取值如下。

weightwvar函数
“cos” w w w cos ⁡ w x \cos wx coswx
“sin” w w w sin ⁡ w x \sin wx sinwx
“alg” α , β \alpha, \beta α,β g ( x ) g(x) g(x)
“alg-loga” α , β \alpha, \beta α,β g ( x ) log ⁡ ( x − a ) g(x)\log(x-a) g(x)log(xa)
“alg-logb” α , β \alpha, \beta α,β g ( x ) log ⁡ ( b − x ) g(x)\log(b-x) g(x)log(bx)
“alg-log” α , β \alpha, \beta α,β g ( x ) log ⁡ ( x − a ) log ⁡ ( b − x ) g(x)\log(x-a)\log(b-x) g(x)log(xa)log(bx)
“cauchy” c c c 1 x − c \frac{1}{x-c} xc1

其中, g ( x ) = ( x − a ) α ∗ ( b − x ) β g(x)=(x-a)^\alpha*(b-x)^\beta g(x)=(xa)α(bx)β

func f ( x ) = x f(x)=x f(x)=x,若weight参数为cos,而wvar取值为 w w w,则实际计算的积分表达式为

∫ a b cos ⁡ w f ( x ) d x \int_a^b\cos wf(x)\text dx abcoswf(x)dx

示例如下

func = lambda x : x
quad(func, 0, np.pi)    # (4.935, 5.478e-14)
quad(func, 0, np.pi, weight='cos', wvar=1)  # (-2.00, 1.926e-13)

多重积分

在【si】中,除了quad之外,还提供了二重、三重以及N重积分的API,分别是【dblquad, tplquad, nquad】,三者所需参数如下

MIN = 1.49e-08
dblquad(func, a, b, gfun, hfun, args=(), epsabs=MIN, epsrel=MIN)
tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=MIN, epsrel=MIN)
nquad(func, ranges, args=None, opts=None, full_output=False)

dblquad

以二重积分为例,其对应的问题可表述为下式

∫ a b ∫ y g ( x ) y h ( x ) f ( y , x ) d x d y \int^b_a\int^{y_h(x)}_{y_g(x)} f(y,x)\text dx\text dy abyg(x)yh(x)f(y,x)dxdy

在函数dblquad中,func对应 f ( y , x ) f(y,x) f(y,x),a,b对那个上式的 a , b a,b a,b,gfun, hfun对应上式的 y g ( x ) , y h ( x ) y_g(x), y_h(x) yg(x),yh(x)

接下来求解下面的积分

∫ 1 2 ∫ x 2 x 3 x y d y d x = ∫ 1 2 1 2 ( x y 2 ) ∣ x 2 x 3 d x = ∫ 1 2 1 2 ( x 7 − x 5 ) d x = 1 2 ( 1 8 x 8 − 1 6 x 6 ) ∣ 1 2 = 1 2 ( 2 8 8 − 2 6 6 ) + 1 48 = 513 48 \begin{aligned} &\int^2_1\int^{x^3}_{x^2} xy\text dy\text dx\\ =&\int^2_1 \frac{1}{2}(xy^2)\vert^{x^3}_{x^2}\text dx=&\int^2_1 \frac{1}{2}(x^7-x^5)\text dx\\ =&\frac1 2(\frac1 8x^8-\frac1 6x^6)\vert^2_1=&\frac1 2(\frac{2^8}{8}-\frac{2^6}{6})+\frac{1}{48}\\ =&\frac{513}{48} \end{aligned} ===12x2x3xydydx1221(xy2)x2x3dx=21(81x861x6)12=485131221(x7x5)dx21(828626)+481

Python代码如下

from scipy.integrate import dblquad
func = lambda x,y : x*y
gf = lambda x: x**2
hf = lambda x: x**3
dblquad(func, 1, 2, gf, hf)
# (10.6875, 5.284867210146833e-13)

计算结果与 513 48 \frac{513}{48} 48513一致。

与二重积分相比,三重积分tplquad只是多了一组qfun和rfun,相当于z处于qfun(x,y)和rfun(x,y)之间。

【nquad】貌似不支持回调函数,其参数ranges是元组的列表,每个元组代表对应未知量的取值范围。若将其映射为三重积分函数,则ranges可表示为 ( ( a 1 , b 1 ) , ( a 2 , b 2 ) , ⋯ , ( a n , b n ) ) ((a_1,b_1), (a_2, b_2),\cdots,(a_n, b_n)) ((a1,b1),(a2,b2),,(an,bn))

下面仍以函数func为例,用nquad得出结果

from scipy.integrate import nquad
nquad(func, [[1,2], [3, 4]])
#(0.39276170758930756, 4.91851540406507e-15)

相关文章:

Python数值微积分,摆脱被高数支配的恐惧

文章目录 差分和累加积分多重积分 Python科学计算:数组💯数据生成 差分和累加 微积分是现代科学最基础的数学工具,但其应用对象往往是连续函数,而其在非连续函数的类比,便是差分与累加。在【numpy】中,可…...

使用express+nginx+pm2+postman实现推送zip包自动更新前端网页

1.nginx配置将80端口代理到项目的3000端口 server {listen 80; #监听的端口server_name localhost; #监听的域名#charset koi8-r;#access_log logs/host.access.log main;location / {#root html;#index index.html index.html;proxy_pass http://127.0.0.1:3000; #转…...

如何在小程序中绑定身份证

在小程序中绑定身份证信息是一项常见的需求,特别是在需要进行实名认证或者身份验证的场景下。通过绑定身份证信息,可以提高用户身份的真实性和安全性,同时也为小程序提供了更多的个性化服务和功能。下面就介绍一下怎么在小程序中绑定居民身份…...

【机器学习】【决策树】分类树|回归树学习笔记总结

决策树算法概述 基本概念 决策树:从根节点开始一步步走到叶子节点,每一步都是决策过程 对于判断的先后顺序把控特别严格 一旦将判断顺序进行变化则最终的结果将可能发生改变 往往将分类效果较佳的判断条件放在前面,即先初略分在进行细节分…...

运维随录实战(14)之docker搭建mysql主从集群(Replication))

1, 从官方景镜像中拉取mysql镜像: docker pull mysql:8.0.24 --platform linux/x86_64 2, 创建master和slave容器: 在创建之前先设置网段 docker network create --subnet=172.20.0.0/24 soil_network master: docker run -d -p 3306:3306 --name mysql-master --net soi…...

CI/CD笔记.Gitlab系列:2024更新后-设置GitLab导入源

CI/CD笔记.Gitlab系列 设置GitLab导入源 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_…...

一款Mac系统NTFS磁盘读写软件Tuxera NTFS 2023 for Mac

当您获得一台新 Mac 时,它只能读取 Windows NTFS 格式的 USB 驱动器。要将文件添加、保存或写入您的 Mac,您需要一个附加的 NTFS 驱动程序。Tuxera 的 Microsoft NTFS for Mac 2023是一款易于使用的软件,可以在 Mac 上打开、编辑、复制、移动…...

Error while Deploying HAP

第一个程序就遇到这么恶心的bug,也查了很多类似的问题是什么情况,后来无意中菜解决了这个bug,确实也是devicps下面加一个参数,但是找了半天 这是我遇到这个问题的解决办法。其他解决办法如下: https://blog.51cto.com…...

多线程扩展:乐观锁、多线程练习

悲观锁、乐观锁 悲观锁:一上来就加锁,没有安全感,每次只能一个线程进入访问完毕后,再解锁。线程安全,性能较差。 乐观锁:一开始不上锁,认为是没有问题的,等要出现线程安全问题的时…...

代码随想录day31 Java版

今天开始刷动态规划&#xff0c;先拿简单题练手 509. 斐波那契数 class Solution {public int fib(int n) {if (n < 1) return n; int[] dp new int[n 1];dp[0] 0;dp[1] 1;for (int index 2; index < n; index){dp[index] dp[index - 1] dp[index -…...

linux系统adb调试工具

adb的全称为Android Debug Bridge&#xff0c;就是起到调试桥的作用。通过adb可以在Eclipse中通过DDMS来调试Android程序&#xff0c;说白了就是调试工具。 adb的工作方式比较特殊&#xff0c;采用监听Socket TCP 5554等端口的方式让IDE和Qemu通讯&#xff0c;默认情况下adb会…...

【Golang星辰图】全面解析:Go语言在Web开发中的顶尖库和框架

创造无限可能&#xff1a;探索Go语言在Web开发中的强大库和框架 前言 Go语言作为一门简洁、高效的编程语言&#xff0c;在Web开发领域也展现出了强大的潜力。本文将会带您深入了解Go语言在Web开发中的相关库和框架&#xff0c;以及它们的优势和使用方法。通过学习这些内容&am…...

CSS 居中对齐 (水平居中 )

水平居中 1.文本居中对齐 内联元素&#xff08;给容器添加样式&#xff09; 限制条件&#xff1a;仅用于内联元素 display:inline 和 display: inline-block; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><…...

数据结构:图及相关算法讲解

图 1.图的基本概念2. 图的存储结构2.1邻接矩阵2.2邻接表2.3两种实现的比较 3.图的遍历3.1 图的广度优先遍历3.2 图的深度优先遍历 4.最小生成树4.1 Kruskal算法4.2 Prim算法4.3 两个算法比较 5.最短路径5.1两个抽象存储5.2单源最短路径--Dijkstra算法5.3单源最短路径--Bellman-…...

【c++设计模式06】创建型4:单例模式(Singleton Pattern)

【c++设计模式06】创建型4:单例模式(Singleton Pattern) 一、定义二、适用场景三、确保,一个类可以实例化一个对象四、分类1、懒汉式——首次访问时才创建实例2、饿汉式——类加载时就创建实例五、线程安全性深入讨论(懒汉式单例模式)1、懒汉式单例真的线程不安全吗?——…...

Python-OpenCV-边缘检测

摘要&#xff1a; 本文介绍了使用Python和OpenCV进行边缘检测的方法&#xff0c;涵盖了基本概念、核心组件、工作流程&#xff0c;以及详细的实现步骤和代码示例。同时&#xff0c;文章也探讨了相关的技巧与实践&#xff0c;并给出了常见问题与解答。通过阅读本文&#xff0c;…...

C#中使用 Prism 框架

C#中使用 Prism 框架 前言一、安装 Prism 框架二、模块化开发三、依赖注入四、导航五、事件聚合六、状态管理七、测试 前言 Prism 框架是一个用于构建可维护、灵活和可扩展的 XAML 应用程序的框架。它提供了一套工具和库&#xff0c;帮助开发者实现诸如依赖注入、模块化、导航…...

什么是线程池,线程池的概念、优点、缺点,如何使用线程池,最大线程池怎么定义?

线程池&#xff08;Thread Pool&#xff09;是一种并发编程中常用的技术&#xff0c;用于管理和重用线程。它由线程池管理器、工作队列和线程池线程组成。 线程池的基本概念是&#xff0c;在应用程序启动时创建一定数量的线程&#xff0c;并将它们保存在线程池中。当需要执行任…...

吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

在本实验中&#xff0c;您将对比回归和分类。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_common import dlc, plot_data from plt_one_addpt_onclick import plt_one_addpt_onclick plt.style.use(./deeplearning.mplstyle)jupy…...

序列的第 k 个数(c++题解)

题目描述 BSNY 在学等差数列和等比数列&#xff0c;当已知前三项时&#xff0c;就可以知道是等差数列还是等比数列。现在给你序列的前三项&#xff0c;这个序列要么是等差序列&#xff0c;要么是等比序列&#xff0c;你能求出第 m项的值吗。 如果第 项的值太大&#xff0c;对…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...